Advertisement

Experimental and Practical Application of Fern Somatic Embryogenesis

  • Anna Mikuła
  • Małgorzata Grzyb
  • Karolina Tomiczak
  • Jan Jarosław Rybczyński
Chapter

Abstract

Somatic embryogenesis (SE) is a fascinating developmental program that was first described for carrot 60 years ago. In 2015, the first report of SE in the Monilophyta was published for Cyathea delgadii Sternb. Using the data obtained for somatic embryo induction and development in this tree fern, we presented a new model system for studying early events in SE. Here, we summarize what is known of that model system, which requires a hormone-free medium to induce embryogenic competence. Special emphasis is placed on hormonal regulation of somatic-to-embryogenic transition and on the cytomorphological and proteomic changes that occur during early SE. Our research also reveals that SE is able to improve fern productivity to a much greater extent than can current conventional in vitro propagation methods for cryptogamic plants.

Keywords

Cyathea delgadii Endogenous regulation In vitro culture Molecular aspects Tree fern 

Abbreviations

ABA

Abscisic acid

ACC

Subunit acetyl-CoA carboxylase

ACS

Acetyl-coenzyme A synthetase

APX

L-ascorbate peroxidase

CKs

Cytokinins

DAHPS1

Phospho-2-dehydro-3-deoxyheptonate aldolase 1

DHQ synthase

3-dehydroquinate synthase

GDH

Glutamate dehydrogenase

GST

Glutathione S-transferase

IAA

Indole-3-acetic acid

MED37

The mediator of RNA polymerase II transcription subunit 37

RGP1

UDP-arabinose mutase

RHM1

UDP-4-keto-L-rhamnose-reductase RHM1

SE

Somatic embryogenesis

References

  1. Almeida AM, Parreira JR, Santos R, Duque AS, Francisco R, Tomé DFA, Ricardo CP, Coelho AV, Fevereiro P (2012) A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. Physiol Plant 146:236–249.  https://doi.org/10.1111/j.1399-3054.2012.01633.x CrossRefPubMedGoogle Scholar
  2. Andriotis VM, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing Arabidopsis embryos. New Phytol 185:649–662.  https://doi.org/10.1111/j.1469-8137.2009.03113.x CrossRefPubMedGoogle Scholar
  3. Atmane N, Blervacq AS, Michaux-Ferriere N, Vasseur J (2000) Histological analysis of indirect somatic embryogenesis in the Marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes). Plant Sci 156:159–167.  https://doi.org/10.1016/S0168-9452(00)00244-2 CrossRefPubMedGoogle Scholar
  4. Barciela J, Vieitez AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann Bot 71:395–404.  https://doi.org/10.1006/anbo.1993.1050 CrossRefGoogle Scholar
  5. Barnicoat H, Cripps R, Kendon J, Sarasan V (2011) Conservation in vitro of rare and threatened ferns-case studies of biodiversity hotspot and island species. In Vitro Cell Dev Biol Plant 47:37–45.  https://doi.org/10.1007/s11627-010-9303-x CrossRefGoogle Scholar
  6. Bharati SK, Dutta Choudhury M, Mazumder BP (2013) In vitro propagation in Pteridophytes: a review. Int J Res Ayurveda Pharm 4:297–303.  https://doi.org/10.7897/2277-4343.04245 CrossRefGoogle Scholar
  7. Camloh M, Ambrožič-Dolinšek J (2011) In vitro regeneration systems of Platycerium. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns: issues and applications. Springer Science+Business Media, LLC, New York, pp 111–126.  https://doi.org/10.1007/978-1-4419-7162-3_8 CrossRefGoogle Scholar
  8. Canhoto J, Mesquita JF, Cruz GS (1996) Ultrastructural changes in cotyledons of pineapple guava (Myrtaceae) during somatic embryogenesis. Ann Bot 78:513–521.  https://doi.org/10.1006/anbo.1996.0149 CrossRefGoogle Scholar
  9. Centeno ML, Rodríguez R, Berros B, Rodríguez A (1997) Endogenous hormonal content and somatic embryogenic capacity of Corylus aveliana L. cotyledons. Plant Cell Rep 17:139–144.  https://doi.org/10.1007/s002990050367 CrossRefGoogle Scholar
  10. Cordle AR, Bui LT, Irish EE, Cheng CL (2011) Laboratory-induced apogamy and apospory in Ceratopteris richardii. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns: issues and applications. Springer Science+Business Media, LLC, New York, pp 25–36.  https://doi.org/10.1007/978-1-4419-7162-3_3 CrossRefGoogle Scholar
  11. Crecelius F, Streb P, Feierabend J (2003) Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves. J Exp Bot 54:1075–1083.  https://doi.org/10.1093/jxb/erg101 CrossRefPubMedGoogle Scholar
  12. Das S, Dutta Choudhury M, Mazumder BP (2013) In vitro propagation of Cyathea gigantea (Wall ex. Hook)—a tree fern. Int J Rec Sci Res 4:211–224Google Scholar
  13. Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A (2017) Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Sci.  https://doi.org/10.1016/j.plantsci.2017.01.017
  14. Du H, Li Y, Li D, Dai S, Jiang C, Shi L (2009) Effect of light, temperature and pH on spore germination and early gametophytic development of Alsophila metteniana. Bio Sci 17(2):182–187.  https://doi.org/10.3724/SP.J.1003.2009.08262 Google Scholar
  15. Eleutério AA, Pérez-Salicrup D (2006) Management of tree ferns (Cyathea spp.) for handicraft production in Cuetzalan, Mexico. Econ Bot 60:182–186. http://www.jstor.org/stable/4257089 CrossRefGoogle Scholar
  16. Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol-Plant 49:631–642.  https://doi.org/10.1007/s11627-013-9547-3
  17. Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402.  https://doi.org/10.1016/j.bbagrm.2014.07.005 CrossRefPubMedGoogle Scholar
  18. Fernández H, Revilla MA (2003) In vitro culture of ornamental ferns. Plant Cell Tissue Organ Cult 73:1–13.  https://doi.org/10.1023/A:1022650701341 CrossRefGoogle Scholar
  19. Fernández H, Bertrand AM, Sánchez-Tamés R (1999) Biological and nutritional aspects involved in fern multiplication. Plant Cell Tissue Organ Cult 56:211–214.  https://doi.org/10.1023/A:1006277229136 CrossRefGoogle Scholar
  20. Fortes AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87:971–979CrossRefPubMedGoogle Scholar
  21. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47.  https://doi.org/10.1023/B:GROW.0000038275.29262.fb CrossRefGoogle Scholar
  22. Gallego P, Martin L, Blazquez A, Guerra H, Villalobos N (2014) Involvement of peroxidase activity in developing somatic embryos of Medicago arborea L. Identification of an isozyme peroxidase as biochemical marker of somatic embryogenesis. J Plant Physiol 171:78–84.  https://doi.org/10.1016/j.jplph.2013.09.017 CrossRefPubMedGoogle Scholar
  23. Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe T (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol-Plant 32:272–289.  https://doi.org/10.1007/BF02822700
  24. Goller K, Rybczyński JJ (2007) Gametophyte and sporophyte of tree ferns in vitro culture. Acta Soc Bot Pol 76:193–199.  https://doi.org/10.5586/asbp.2007.022 CrossRefGoogle Scholar
  25. Grzyb M, Kalandyk A, Waligórski P, Mikuła A (2017) The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tissue Organ Cult 123:467–478.  https://doi.org/10.1007/s11240-017-1185-8 Google Scholar
  26. Grzyb M, Kalandyk A, Mikuła A (2018) Effect of TIBA, fluridone and salicylic acid on somatic embryogenesis and endogenous hormone and sugar contents in the tree fern Cyathea delgadii Sternb. Acta Physiol Plant 40:1.  https://doi.org/10.1007/s11738-017-2577-4 CrossRefGoogle Scholar
  27. Halperin W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–453CrossRefGoogle Scholar
  28. Heringer AS, Barroso T, Macedo AF, Santa-Catarina C, Souza GHMF, Floh EIS, Souza-Filho GA, Silveira V (2015) Label-Free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLoS One 10:23.  https://doi.org/10.1371/journal.pone.0127803 CrossRefGoogle Scholar
  29. Hiendlmayer R, Randi AM (2007) Response of spores and young gametophytes of Cyathea delgadii Sternb. (Cyatheaceae) and Blechnum brasiliense Desv. (Blechnaceae) to different light levels. Acta Bot Bras 21:909–915.  https://doi.org/10.1590/S0102-33062007000400015 CrossRefGoogle Scholar
  30. Hirsch AM (1976) The development of aposporous gametophytes and regenerated sporophytes from epidermal cells of excised fern leaves: an anatomical study. Am J Bot 63:263–271CrossRefGoogle Scholar
  31. Ho W, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180.  https://doi.org/10.1007/BF01281800 CrossRefGoogle Scholar
  32. Ho R, Teai T, Bianchini JP, Lafont R, Raharivelomanana P (2011) Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Fernández H et al (eds) Working with ferns: issues and applications. Springer Science+Business Media, LLC, New York, pp 321–346.  https://doi.org/10.1007/978-1-4419-7162-3_23 CrossRefGoogle Scholar
  33. Huang YM, Chiou WL, Lee PH (2001) Morphology of the gametophytes and young sporophytes of Cyatheaceae native to Taiwan. Taiwania 46(3):274–283.  https://doi.org/10.6165/tai.2001.46(3).274 Google Scholar
  34. Ikeda T, Taji A, Hirai M, Yamashita I, Enomoto S, Noguchi M (1999) Association between water status and sucrose metabolism in cell suspension culture of carrot. Plant Biotechnol 16:375–379.  https://doi.org/10.5511/plantbiotechnology.16.375 CrossRefGoogle Scholar
  35. Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92:85–89.  https://doi.org/10.1111/j.1399-3054.1994.tb06658.x CrossRefGoogle Scholar
  36. Jiménez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257.  https://doi.org/10.1016/S0168-9452(00)00382-4 CrossRefPubMedGoogle Scholar
  37. Kennedy D, Norman C (2005) What don’t we know? Science 309(5731):75–102CrossRefPubMedGoogle Scholar
  38. Kuriyama A, Kobayashi T, Maeda M (2004) Production of sporophytic plants of Cyathea lepifera, a tree fern, from in vitro cultured gametophyte. J Jpn Soc Hortic Sci 73:140–142.  https://doi.org/10.2503/jjshs.73.140
  39. Large MF, Braggins JE (2004) Tree ferns. Timber Press, Portland, pp 1–359Google Scholar
  40. Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473.  https://doi.org/10.1002/pmic.20040098 CrossRefPubMedGoogle Scholar
  41. Liu Y, Wujisguleng W, Long C (2012) Food uses of ferns in China: a review. Acta Soc Bot Pol 81:263–270.  https://doi.org/10.5586/asbp.2012.046 CrossRefGoogle Scholar
  42. Makowski D, Tomiczak K, Rybczyński JJ, Mikuła A (2016) Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiol Plant 38:19.  https://doi.org/10.1007/s11738-015-2037-y CrossRefGoogle Scholar
  43. Martin AB, Cuadrado Y, Guerra H, Gallego P, Hita O, Martin L, Dorado A, Villalobos N (2000) Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and nonembryogenic calli from Medicago arborea L. Plant Sci 29:143–151.  https://doi.org/10.1016/S0168-9452 (99) 00251-4CrossRefGoogle Scholar
  44. Mikuła A, Tykarska T, Zielinska M, Kuraś M, Rybczyński JJ (2004) Ultrastructural changes in zygotic embryos and somatic embryogenesis of Gentiana punctata L. during callus formation and somatic embryogenesis. Acta Biol Cracov Ser Bot 46:109–120.  https://doi.org/10.1079/IVP2005678
  45. Mikuła A, Pożoga M, Grzyb M, Rybczyński JJ (2015a) An unique system of somatic embryogenesis in the tree fern Cyathea delgadii Sternb. – the importance of explant type, and physical and chemical factors. Plant Cell Tiss Org Cult 123:467–478.  https://doi.org/10.1007/s11240-015-0850-z
  46. Mikuła A, Pożoga M, Tomiczak K, Rybczyński JJ (2015b) Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34(5):783–794.  https://doi.org/10.1007/s00299-015-1741-9 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Moriguchi T, Kita M, Tomono Y, EndoInagaki T, Omura M (1999) One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures. Plant Cell Physiol 40:651–655.  https://doi.org/10.1093/oxfordjournals.pcp.a029589 CrossRefPubMedGoogle Scholar
  48. Moura IR, Simões-Costa MC, Garcia J, Silva MJ, Duarte MC (2012) In vitro culture of tree fern spores from Cyatheaceae and Dicksoniaceae families. Acta Hortic 937:455–461.  https://doi.org/10.17660/ActaHortic.2012.937.55 CrossRefGoogle Scholar
  49. Nic-Can GI, Avilez-Montalvo JR, Aviles-Montalvo RN, Márquez-López RE, Mellado-Mojica E, Galaz-Ávalos RM, Loyola-Vargas VM (2016) The relationship between stress and somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Switzerland, pp 151–170.  https://doi.org/10.1007/978-3-319-33705-0_9 CrossRefGoogle Scholar
  50. Nonami H, Schulze ED (1989) Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves. Combined measurements with the cell pressure probe and nanoliter osmometer. Planta 177:35–46.  https://doi.org/10.1007/BF00392152 CrossRefPubMedGoogle Scholar
  51. Pelleschi S, Rocher JP, Prioul JL (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ 20:493–503.  https://doi.org/10.1046/j.1365-3040.1997.d01-89.x CrossRefGoogle Scholar
  52. Pérez-García B, Mendoza-Ruiz AC, Espinosa-Matías S, Gómez-Pignataro LD (2010) Gametophyte morphology of Platycerium andinum Baker and Platycerium wandae Racif. Micron 41:806–813.  https://doi.org/10.1016/j.micron.2010.05.005 CrossRefPubMedGoogle Scholar
  53. Pinto G, Silva S, Neves L, Araujo C, Santos C (2010) Histocytological changes and reserve accumulation during somatic embryogenesis in Eucalyptus globulus. Trees-Struct Funct 24:763–769.  https://doi.org/10.1007/s00468-010-0446-5
  54. Puigderrajols P (2001) Ultrastructure of early secondary embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.) Ann Bot 87:179–189.  https://doi.org/10.1006/anbo.2000.1317 CrossRefGoogle Scholar
  55. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107.  https://doi.org/10.1007/BF00022463 CrossRefGoogle Scholar
  56. Raghavan V (2006) Can carrot and Arabidopsis serve as model systems to study the molecular biology of somatic embryogenesis? Curr Sci 90:1336–1343Google Scholar
  57. Rathinasabapathi B (2011) Arsenic hyperaccumulator fern Pteris vittata: utilities for arsenic phytoremediation and plant biotechnology. In: Fernández H et al (eds) Working with ferns: issues and applications. Springer Science+Business Media, LLC, New York, pp 261–269.  https://doi.org/10.1007/978-1-4419-7162-3_19 CrossRefGoogle Scholar
  58. Rechenmacher C, Schmitt JL, Droste A (2010) Spore germination and gametophyte development of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) under different pH conditions. Braz J Biol 70:1155–1160CrossRefPubMedGoogle Scholar
  59. Reinert J (1958) Untersuchungen über die Morphogenese an Gewebekulturen. Ber Dtsch Bot Ges 71:15Google Scholar
  60. Rosas MM, Quiroz-Figueroa F, Shannon LM, Ruiz-May E (2016) The current status of proteomic studies in somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Cham, pp 103–119.  https://doi.org/10.1007/978-3-319-33705-0_7 CrossRefGoogle Scholar
  61. Rose RJ, Mantiri FR, Kurdyukov S, Chen S-K, Wang X-D, Nolan KE, Sheahan MB (2010) Developmental biology of somatic embryogenesis. In: Pua E-C, Davey MR (eds) Plant developmental biology – biotechnological perspectives, vol 2. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-642-04670-4_1 Google Scholar
  62. Rybczyński JJ, Mikuła A (2011) Tree ferns biotechnology: from spores to sporophytes. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns: issues and applications. Springer Science+Business Media, LLC, New York, pp 135–148.  https://doi.org/10.1007/978-1-4419-7162-3_10 CrossRefGoogle Scholar
  63. Shukla SP, Khare PB (2013) In vitro mass multiplication of a threatened tree fern, Cyathea spinulosa Wall. ex Hook. Int J Genet Eng Biotechnol 3:15–23.  https://doi.org/10.13140/2.1.2282.8168 Google Scholar
  64. Somer M, Arbesú R, Menéndez V, Revilla MA, Fernández H (2010) Sporophyte induction studies in ferns in vitro. Euphytica 171:203–210.  https://doi.org/10.1007/s10681-009-0018-1 CrossRefGoogle Scholar
  65. Stamp JA (1987) Somatic embryogenesis in cassava: the anatomy and morphology of the regeneration process. Ann Bot 57:451–459CrossRefGoogle Scholar
  66. Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708CrossRefGoogle Scholar
  67. Szypuła W, Pietrosiuk A, Suchocki P et al (2005) Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of huperzine A. Plant Sci 168:1443–1452.  https://doi.org/10.1016/j.plantsci.2004.12.021 CrossRefGoogle Scholar
  68. Tchorbadjieva MI (2005) Protein markers for somatic embryogenesis. In: Mujib A, Šamaj J (eds) Somatic embryogenesis. Plant cell monograph, 2nd edn. Springer, Berlin/Heidelberg, pp 215–233.  https://doi.org/10.1007/7089 Google Scholar
  69. Teng WL, Teng MC (1997) In vitro regeneration patterns of Platycerium bifurcatum leaf cell suspension culture. Plant Cell Rep 16:820–824.  https://doi.org/10.1007/s002990050327 CrossRefGoogle Scholar
  70. Tonietto Â, Sato JH, Teixeira JB, Souza EM, Pedrosa FO, Franco OL, Mehta A (2012) Proteomic analysis of developing somatic embryos of Coffea arabica. Plant Mol Biol Rep 30:1393–1399.  https://doi.org/10.1007/s11105-012-0425-7
  71. Vale EM, Heringer AS, Barroso T, Ferreira ATS, Costa MN, Perales JEA, Santa-Catarina C, Silveira V (2014) Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. Proteome Sci 12:37.  https://doi.org/10.1186/1477-5956-12-37 CrossRefPubMedCentralGoogle Scholar
  72. Vargas IB, Droste A (2014) In vitro propagation of Cyathea atrovirens (Cyatheaceae): spore storage and sterilization conditions. Rev Biol Trop 62:299–308CrossRefPubMedGoogle Scholar
  73. Varhaníková M, Uvackova L, Skultety L, Pretova A, Obert B, Hajduch M (2014) Comparative quantitative proteomic analysis of embryogenic and non-embryogenic calli in maize suggests the role of oxylipins in plant totipotency. J Proteome 104:57–65.  https://doi.org/10.1016/j.jprot.2014.02.003 CrossRefGoogle Scholar
  74. Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signaling. Frontiers in Plant Sci 4:163.  https://doi.org/10.3389/fpls.2013.00163 Google Scholar
  75. Wu H, Xiu-Qun L, Hua J, Long-Qing C (2010) Effect of light, macronutrients, and sucrose on germination and development of the endangered fern Adiantum reniforme var. sinense (Adiantaceae). Sci Hort 125:417–421.  https://doi.org/10.1016/j.scienta.2010.03.004 CrossRefGoogle Scholar
  76. Yu R, Zhang G, Li H, Cao H, Mo X, Gui M, Zhou X, Jiang Y, Li S, Wang J (2017) In vitro propagation of the endangered tree fern Cibotium barometz through formation of green globular bodies. Plant Cell Tiss Org Cult 128:369–379.  https://doi.org/10.1007/s11240-016-1116-0
  77. Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X (2016) ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol Cell Proteomics 15:2108–2124.  https://doi.org/10.1074/mcp.M115.049338 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anna Mikuła
    • 1
  • Małgorzata Grzyb
    • 1
  • Karolina Tomiczak
    • 1
  • Jan Jarosław Rybczyński
    • 1
  1. 1.Department of Experimental Botany, Polish Academy of SciencesBotanical Garden – Center for Biological Diversity Conservation in WarsawWarsawPoland

Personalised recommendations