Skip to main content

New Insights on Atmospheric Fern Spore Dynamics

  • Chapter
  • First Online:
Current Advances in Fern Research

Abstract

Pteridophyte airborne spores are scarcely represented worldwide compared to fungal spores or even to pollen grains. Through different studies, 81 taxa were identified in the atmosphere from different sampling points around the world with greater number of taxa in tropical and subtropical areas of Asia, America and Africa, the areas where pteridophytes have the greatest estimated diversity. Higher annual levels and higher daily concentrations were also found in these tropical and subtropical areas. Seasonal distribution of spores varied depending on the sampling site, with the highest levels in temperate areas occurring between late spring and early autumn, while in tropical and subtropical areas they were distributed throughout the year. Hourly spore concentrations were located in the central hours of the day. Airborne fern and lycopod spores generally appeared to be positively influenced by temperature and sunshine hours and negatively by rainfall, relative humidity and wind speed. The study of aerovagant spores has direct application in medicine, as a consequence of the allergenicity of some spore types, mainly in tropical and subtropical areas of Asia and in forensic palynology and criminology helping to the resolution of certain police cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Dieyeh MH, Ratrout YS (2012) Seasonal variation of airborne pollen grains in the atmosphere of Zarqa area, Jordan. Aerobiologia 28:527–539

    Article  Google Scholar 

  • Adeonipekun PA, John M (2011) Palynological investigation of haze dust in Ayetoro-Itele Ota, Southwest Nigeria. J Ecol Nat Environ 3(14):455–460

    Article  Google Scholar 

  • Ajikah L, Ogundipe OT, Bamgboye O (2015) Palynological survey of airborne pollen and spores in the University of Lagos, Akoka campus, Southwestern Nigeria. Ife Journal of Science 17(3):643–655

    Google Scholar 

  • Alzate Guarín F, Quijano Abril MA, Álvarez A, Fonnegra R (2015) Atmospheric pollen and spore content in the urban area of the city of Medellin, Colombia. Hoehnea 42(1):9–19. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2236-89062015000100009

  • Andersen F, Paulsen E (2016) Allergic contact dermatitis caused by the Boston fern Nephrolepis exaltata ‘Bostoniensis. Contact Derm 75:240–259

    Article  Google Scholar 

  • Atwe SU, Ma Y, Gill HS (2014) Pollen grains for oral vaccination. J Control Release 194:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beggs PJ (2010) Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases. Int J Environ Res Public Health 7(8):3006–3021

    Article  PubMed  PubMed Central  Google Scholar 

  • Berman D, Hons BA (2013) Regional-specific pollen and fungal spore allergens in South Africa. Curr Allergy Clin Im 26(4):196–209

    Google Scholar 

  • Bishayee K, Chakraborty D, Ghosh S, Boujedaini N, Khuda-Bukhsh AR (2013) Lycopodine triggers apoptosis by modulating 5-lipoxygenase, and depolarizing mitochondrial membrane potential in androgen sensitive and refractory prostate cancer cells without modulating p53 activity: signaling cascade and drug-DNA interaction. Eur J Pharmacol 698:110121

    Article  CAS  Google Scholar 

  • Boch S, Berlinger M, Fischer M, Knop E, Nentwig W, Türke M, Prati D (2013) Fern and bryophyte endozoochory by slugs. Oecol 172:817–822

    Article  Google Scholar 

  • Boch S, Berlinger M, Prati D, Fischer M (2016) Is fern endozoochory widespread among fern-eating herbivores? Plant Ecol 27(1):13–20

    Article  Google Scholar 

  • Bunnag C, Dhorranintra B, Limsuvan S, Jareoncharsri P (1989) Ferns and their allergenic importance: skin and nasal provocation tests to fern spore extract in allergic and non-allergic patients. Ann Allergy 62(6):554–558

    CAS  PubMed  Google Scholar 

  • Cakmak S, Dales RE, Coates F (2012) Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol 129(1):228–231

    Article  CAS  PubMed  Google Scholar 

  • Camacho IC (2015) Airborne pollen in Funchal city, (Madeira Island, Portugal) – First pollinic calendar and allergic risk assessment. Ann Agric Environ Med 22(4):608–613

    Google Scholar 

  • Caulton E, Keddie S, Carmichael R, Sales J (2000) A ten year study of the incidence of spores of bracken, (Pteridium aquilinum (L.) Kuhn.) in an urban rooftop airstream in south east Scotland. Aerobiologia 16:29–33

    Article  Google Scholar 

  • Chen S-H (1984) Aeropalynological study of Nankang, Taipei (Taiwan). Taiwania 29:113–120

    Google Scholar 

  • Chen S-H, Chien M-C (1986) Two-year investigation of the airborne pollen at Nankang, Taipei (Taiwan). Taiwania 31:33–40

    Google Scholar 

  • Chen S-H, Huang T-C (1980) Aeropalynological study of Taipei Basin, Taiwan. Grana 19(2):147–155

    Article  Google Scholar 

  • Chew FT, Lim SH, Shang HS, Siti Dahlia MD, Goh DYT, Lee BW (2000) Evaluation of the allergenicity of tropical pollen and airborne spores in Singapore. Allergy 55:340–347

    Article  CAS  PubMed  Google Scholar 

  • Christenhusz MJM, Zhang X-C, Schneider H (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19:7–54

    Article  Google Scholar 

  • Christopher EB, Ojone AS, Onojo IS (2013) A Study of Derived Savanna environment through airborne palynomorphs, Anyigba, Kogi State, Nigeria. Sch Acad J Biosci 1(6):313–317

    Google Scholar 

  • Conant DS (1978) A radioisotope technique to measure spore dispersal of the tree fern Cyathea arborea SM. Pollen Spores 20:580–593

    Google Scholar 

  • Contreras-Duarte AR, Bogotá-Ángel RG, Jiménez-Bulla LC (2006) Atlas de las esporas de Chipaque (Cundinamarca, Colombia). Cadalsia 28(2):327–357

    Google Scholar 

  • Corlett R (2016) Plant diversity in a changing world: status, trends, and conservation needs. Plant Diver 38:10–16

    Article  Google Scholar 

  • Cour P (1974) Nouvelles techniques de détection des flux et des retombées polliniques: étude de la sedimentation des pollens et des spores á la surface du sol. Pollen Spores 16:103–141

    Google Scholar 

  • Cousens MI (1988) Reproductive strategies of pteridophytes. In: Lovett-Doust J, Lovett-Doust L (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, New York, pp 307–328

    Google Scholar 

  • D’Amato G, Spieksma FTM (1995) Aerobiologic and clinical aspects of mould allergy in Europe. Allergy 55(11):870–877

    Article  Google Scholar 

  • Davies RR (1971) Air sampling for fungi, pollens and bacteria. Academic Press, London

    Google Scholar 

  • Devi S (1980) The concept of Perispore-an assessment. Grana 19:159–172

    Article  Google Scholar 

  • Devi S, Yasmeen Singh J, Shankar R (1989) Patch testing animals to allergenic Fern spores. Cutan Ocul Toxicol 8(2):167–172

    Article  Google Scholar 

  • Duckett JG (1985) Wild gametophytes of Equisetum sylvaticum. Am. Fern J. 75:120–127

    Article  Google Scholar 

  • Durham OC (1946) The volumetric incidence of atmospheric allergens, IV. A proposed standard method of gravity sampling counting and volumetric interpolation of results. J Allergy 17:79–86

    Article  CAS  PubMed  Google Scholar 

  • Erdtman G (1960) The acetolysis method, a revised description. Sven Bot Tidskr 54:561–564

    Google Scholar 

  • Favali MA, Gallo F, Maggi O, Mandrioli P, Pacini E, Pasquariello G, Piervittori R, Pietrini AM, Ranalli G, Ricci S, Roccardi A, Sorlini C (2003) Analysis of the biological aerosol. In: Mandrioli P, Caneva G, Sabbioni C (eds) Cultural heritage and aerobiology. Kluwer Academic Publishers, Dordrecht, pp 145–172

    Chapter  Google Scholar 

  • Geller-Bernstein C, Keynan N, Bejerano A, Shomer-Ilan A, Waisel Y (1987) Positive skin tests to fern spore extracts in atopic patients. Ann Allergy 58(2):125–127

    CAS  PubMed  Google Scholar 

  • Gómez-Noguez F, Pérez-García B, Mendoza-Ruiz A, Orozco-Segovia A (2013) Flora palinológica de los helechos y licofitas de Río Malila, Hidalgo, México. Bot Sci 91(2):135–154

    Google Scholar 

  • Gómez-Noguez F, Pérez-García B, Mendoza-Ruiz A, Orozco-Segovia A (2014) A Pluviometric Fern spore, fungal spore, and pollen trap. Am Fern J 104(1):1–6

    Article  Google Scholar 

  • Gómez-Noguez F, Pérez-García B, Mehltreter K, Orozco-Segovia A, Rosas-Pérez I (2016) Spore mass and morphometry of some fern species. Flora 223:99–105

    Article  Google Scholar 

  • Gómez-Noguez F, Pérez-García B, Mendoza-Ruiz A, Orozco-Segovia A (2017) Fern and lycopod spores rain in a cloud forest of hidalgo, Mexico. Aerobiologia 33:23–35

    Article  Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere. Leonard Hill, Plymouth, pp 39–42

    Google Scholar 

  • Haratym W, Weryszko-Chmielewska E, Dmitruk M (2014) An analysis of the content of Pteridophyta spores in aeroplankton of Lublin (2013-2014). Acta Agrobot 67(3):21–28

    Article  Google Scholar 

  • Hausen BM, Schulz KH (1978) Occupational allergic contact dermatitis due to leatherleaf fern Arachnioides adiantiformis (Forst) Tindale. Br J Dermatol 98(3):325–329

    Article  CAS  PubMed  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Apl Biol 39(2):257–265

    Article  Google Scholar 

  • Hooghiemstra H, Lézine A-M, Leroy SAG, Dupont L, Marret F (2006) Late quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat Int 148:29–44

    Article  Google Scholar 

  • Hossain MS, Pasha MK (2012) Airborne fungal and pteridophytic spores in Chittagong University Campus, Chittagong. J. Asiat. Soc. Bangladesh, Sci 38(1):119–124

    Google Scholar 

  • Huang T-C, Huang S-Y, Hsiao A, Chen S-H (2008) Aeropalynological study of Kinmen Island, Taiwan. Taiwania 53(4):369–382

    Google Scholar 

  • Hurtado I, Riegler-Goihman, M (1986) Air-Sampling Studies in a Tropical Area. Grana 25(1):63–68

    Google Scholar 

  • Hyde HA (1973) Atmospheric pollen and spores in relation to allergy. II. Clin Exp Allergy 3:109–126

    Article  CAS  Google Scholar 

  • Kasprzyk I (2004) Airborne pollen of entomophilous plants and spores of pteridophytes in Rzeszów and its environs (SE Poland). Aerobiologia 20:217–222

    Article  Google Scholar 

  • Kofler H, Hemmer W, Focke M, Jarisch R (2000) Fern allergy. Allergy 55:299–300

    Article  CAS  PubMed  Google Scholar 

  • Kreft H, Jetz W, Mutke J, Barthlott W (2010) Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33:408–419

    Article  Google Scholar 

  • Kumari P, Otaghvari AM, Govindapyari H, Bahuguna YM, Uniyal PL (2011) Some ethno-medicinally important Pteridophyte of India. Int J Med Arom Plants 1(1):18–22

    Google Scholar 

  • Lacey ME, McCartney HA (1994) Measurement of airborne concentrations of spores of bracken (Pteridium aquilinum). Grana 33:91–93

    Article  Google Scholar 

  • Lacey J, Crook B, Janaku Bai A (1996) The detection of airborne allergens implicated in occupational asthma. In: Muillenberg ML, Burge HA (eds) Aerobiology. Boca Raton CRC Press, New York

    Google Scholar 

  • Landi M, Zoccola A, Bacaro G, Angiolini C (2014) Phenology of Dryopteris affinis ssp. affinis and Polystichum aculeatum: modeling relationships to the climatic variables in a Mediterranean area. Plant Species Biol 29:129–137

    Article  Google Scholar 

  • Large MF, Braggins JE (1990) Effect of different treatments on the morphology and size of fern spores. Rev Paleobot Palynol 64(1):213–221

    Article  Google Scholar 

  • La Serna-Ramos IE, Domínguez-Santana MD (2003) Pólenes y esporas aerovagantes en Canarias. Servicio de Publicaciones de la Universidad de La Laguna, La Laguna

    Google Scholar 

  • Lee PH, Lin TT, Chiou WL (2009) Phenology of 16 species of ferns in a subtropical forest of northeastern Taiwan. J Plant Res 122(1):61–67

    Article  PubMed  Google Scholar 

  • Leitão MT, Santos MF, Sérgio C, Ormonde J, Carvalho GM (1996) Plantas criptogâmicas na atmosfera de Coimbra. Portugal Anales Jard Bot Madrid 54:30–36

    Google Scholar 

  • Levetin E, Rogers CA, Hall SA (2000) Comparison of pollen sampling with a Burkard spore trap and a Tauber trap in a warm temperate climate. Grana 39:294–302

    Article  Google Scholar 

  • Lindström S, Erlström M, Piasecki S, Nielsen LH, Mathiesen A (2017) Palynology and terrestrial ecosystem change of the middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Rev Palaeobot Palynol 244:65–95

    Article  Google Scholar 

  • Majas FD, Romero EJ (1992) Aeropalynological research in the Northeast of Buenos Aires Province, Argentina. Grana 31(2):143–156

    Google Scholar 

  • Makgomol K (2006) Morphology of Fern spores from Phu Phan National Park. Kasetsart J (Nat Sci) 40:116–122

    Google Scholar 

  • Mandrioli P, Comtois P, Levizzani V (1998) Methods in aerobiology. Pitagora Editrice Bologna, Bologna

    Google Scholar 

  • Mehltreter K, Palacios-Ríos M (2003) Phenological studies of Acrostichum danaeifolium (Pteridaceae, Pteridophyta) at a mangrove site on the Gulf of Mexico. J Trop Ecol 19(2):155–162

    Article  Google Scholar 

  • Mickel JT (1982) Fern spore? What for? Fiddlehead forum. News Am Fern Soc 9:5

    Google Scholar 

  • Newson R, Strachan D, Corden J, Millington W (2000) Fungal and other spore counts as predictors of admissions for asthma in the Trent region. Occup Environ Med 57:786–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Tiffney BH, Knoll AH (1983) Patterns in vascular land plant diversification. Nature 303:614–616

    Article  Google Scholar 

  • Nilsson S, Praglowski J (1974) Pollen and spore incident and phenology in the Stockholm area during 1972. Grana 14(2):78–84

    Article  Google Scholar 

  • Njokuocha RC (2006) Airborne pollen grains in Nsukka, Nigeria. Grana 45:73–80

    Article  Google Scholar 

  • Noetinger M, Romero EJ, Majas FD (1994) Airborne pollen and spores monitoring in Buenos Aires city: a preliminary report. Part II. Herbs, weeds (NAP) and spores. General discussion. Aerobiologia 10:129–139

    Article  Google Scholar 

  • O’Driscoll C, Ramwell C, Harhen B, Morrison L, Clauson-Kaas F, Hansen HCB, Campbell G, Sheahan J, Misstear B, Xiao L (2016) Ptaquiloside in Irish bracken ferns and receiving waters, with implications for land managers. Molecules 21(5):543

    Google Scholar 

  • Ogden EC, Raynor GS (1967) A new sampler for airborne pollen emission in Ambrosia, Phleum, Zea and Ricinus. Amer J Bot 56(1):16–21

    Article  Google Scholar 

  • Ogden EC, Raynor GS, Hayes JV, Lewis DM, Haines JH (1974) Manual for sampling airborne pollen. Hapner Press, New York

    Google Scholar 

  • Ong TC, Lim SH, Chen X, Dali SDM, Tan HTW, Lee BW, Chew FT (2012) Fern spore and pollen air spora profile of Singapore. Aerobiologia 28:135–151

    Article  Google Scholar 

  • Pathirane L (1975) Aerobiological literature in scientific periodicals. Grana 15:145–147

    Article  Google Scholar 

  • Penrod KA, McCormick LH (1996) Abundance of viable hay-scented fern spores germinated from hardwood forest soils at various distances from a source. Am Fern J 86:69–79

    Article  Google Scholar 

  • Perkins WA (1957) The rotorod sampler. Second Semiannual Report. CLM 186. Standford Univ, California

    Google Scholar 

  • Pla Dalmau JM (1958) Aeropalinología gerundense. An Inst Est Gerundenses 12:63–88

    Google Scholar 

  • Potter DM, Baird MS (2000) Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br J Cancer 83(7):1342–1348

    Article  Google Scholar 

  • Povey AC, Potter D, O’Connor PJ (1996) 32P-Postlabeling analysis of DNA adducts formed in the upper gastrointestinal tissue of mice fed bracken or bracken spores. Br J Cancer 74:1342–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prance GT (2001) Discovering the plant world. Taxon 50(2):345–359

    Article  Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Amer J Bot 91:1582–1598

    Article  CAS  Google Scholar 

  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81

    Article  Google Scholar 

  • Quamar MF, Bera SF (2016) Pollen analysis of spider web samples from Korba District, Chhattisgarh (central India): an aerobiological aspect. Aerobiologia 32(4):645–655

    Article  Google Scholar 

  • Ranker TA, Sundue MA (2015) Why are there so few species of ferns? Trends Plant Sci 20:402–403

    Article  CAS  PubMed  Google Scholar 

  • Rantio-Lehtimäki A (1994) Short, medium and long range transported airborne particles in viability and antigenic analyses. Aerobiologia 10:175–181

    Article  Google Scholar 

  • Rasmussen LH, Schmidt B, Sheffield E (2013) Ptaquiloside in bracken spores from Britain. Chemosphere 90:2539–2541

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez de la Cruz D, Sánchez-Reyes E, Sánchez-Sánchez J (2009) Effects of meteorological factors on airborne bracken (Pteridium aquilinum (L.) Kuhn.) spores in Salamanca (middle-west Spain). Int J Biometeorol 53:231–237

    Article  PubMed  Google Scholar 

  • Rodríguez de la Cruz D, Sánchez-Reyes E, Sánchez-Sánchez J (2010) Aerobiology of Pteridophyta spores: preliminary results and applications. In: Kumar A, Fernández H, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York, pp 271–281

    Google Scholar 

  • Rodríguez de la Cruz D, Sánchez Reyes E, Martín Baz A, Sánchez Sánchez J (2011) Aerobiological survey in the biosphere reserve “sierras de Francia y Béjar” (MW Spain). In: Testillano PS, Pardo C, Risueño MC, López-Cepero JM (eds) Pollen biotechnology, diversity and function in a changing environment. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, p 161

    Google Scholar 

  • Sáenz Laín C (2004) Glosario de términos palinológicos. Lazaroa 25:93–112

    Google Scholar 

  • Salén EB (1951) Lycopodium allergy. Acta Allergol 4:308–319

    Article  PubMed  Google Scholar 

  • Schneller JJ (1975) Untersuchungen an einheimischen Farnen, insbesondere der Dryopteris filix-mas Gruppe 3. Teil Okologische Unters Ber Schweiz Bot Ges 85:110–159

    Google Scholar 

  • Schneller J, Liebst B (2007) Patterns of variation in a common fern (Athyrium filix-femina; Woodsiaceae): population structure along and between altitudinal gradients. Am J Bot 94:965–971

    Article  PubMed  Google Scholar 

  • Sharpe JM, Mehltreter K, Walker LR (2010) Ecological importance of ferns. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge, pp 1–21

    Google Scholar 

  • Simán SE, Povey AC, Ward TH, Margison GP, Sheffield E (2000) Fern spore extracts can damage DNA. Br J Cancer 83(1):69–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Simabukuro EA, Esteves LM, Felippe GM (2000) Fern spore rain collected at two different heights. Fern Gaz 16(3):147–166

    Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55(3):705–731

    Article  Google Scholar 

  • Songnuan W, Bunnag C, Soontrapa K, Pacharn P, Wangthan U, Siriwattanakul U, Malainual N (2015) Airborne pollen survey in Bangkok, Thailand: a 35-year update. Asian Pac J Allergy Immunol 33:253–262

    PubMed  Google Scholar 

  • Spieksma FTM (1992) Allergological aerobiology. Aerobiologia 8:5–8

    Article  Google Scholar 

  • Stanley E (1992) Application in palynology to establish the province and travel history of illicit drugs. Microscope 40:149–152

    CAS  Google Scholar 

  • Sudareva N, Suvorova O, Saprykina N, Vilesov A, Bel’tiukov P, Petunov S, Radilov A (2017) Two-level delivery systems for oral administration of peptides and proteins based on spore capsules of Lycopodium clavatum. J Mater Chem B 5:7711–7720

    Article  CAS  Google Scholar 

  • Sugita N, Ootsuki R, Fujita T, Murakami N, Ueda K (2013) Possible spore dispersal of a bird-nest fern Asplenium setoi by Bonin flying foxes Pteropus pselaphon. Mammal Study 38:225–229

    Article  Google Scholar 

  • Tauber H (1967) Investigations of the mode of pollen transfer in forested areas. Rev Palaeobot Palynol 3:277–286

    Article  Google Scholar 

  • Testo W, Sundue M (2016) A 4000-species dataset provides new insight into the evolution of ferns. Mol Phylogenet Evol 105:200–211

    Article  PubMed  Google Scholar 

  • Tomšík P (2014) Ferns and Lycopods - a potential Treasury of anticancer agents but also a carcinogenic hazard. Phytother Res 28:798–810

    Article  PubMed  CAS  Google Scholar 

  • Tryon AF, Lugardon B (1991) Spores of the Pteridophyta. Springer, New York

    Book  Google Scholar 

  • Vicent M, Gabriel y Galán JM, Ainoüche A (2014) Insight into fern evolution: a mechanistic approach to main concepts and study techniques. Bot Complut 38:7–24

    Google Scholar 

  • Vijayakanth P, Sathish SS (2016) Studies on the spore morphology of pteridophytes from Kolli Hills, Eastern Ghats, Tamil Nadu, India. IJRBS 4(1):1–12

    Article  Google Scholar 

  • Virgilio A, Sinisi A, Russo V, Gerardo S, Santoro A, Galeone A, Taglialatela-Scafati O, Ropero F (2015) Ptaquiloside, the major carcinogen of bracken fern, in the pooled raw milk of healthy sheep and goats: an underestimated, global concern of food safety. J Agric Food Chem 63(19):4886–4892

    Article  CAS  PubMed  Google Scholar 

  • Wilson D, Donaldson LJ, Sepai O (1998) Should be frightened by bracken? A review of the evidence. J Epidemiol Community Health 52:812–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiltshire PEJ (2009) Forensic ecology, botany, and palynology: some aspects of their role in criminal investigation. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer Science + Business Media, Dordrecht, pp 129–149

    Chapter  Google Scholar 

  • Yang Y-L, Huang T-C, Chen S-H (2003) Diurnal variations of airborne pollen and spores in Taipei City, Taiwan. Taiwania 48(3):168–179

    Google Scholar 

  • Yasmeen JS, Devi S (1988) Pteridophyte aerospora of India. Grana 27:229–238

    Article  Google Scholar 

  • Zenkteler E (2012) Morphology and peculiar features of spores of fern species occurring in Poland. Acta Agrobot 65(2):3–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rodríguez de la Cruz .

Editor information

Editors and Affiliations

Annex 20.1 Key to Airborne Fern and Lycopod Spores

Annex 20.1 Key to Airborne Fern and Lycopod Spores

Spores inaperturate

Equisetum

Spores aperturate or scared

1

1a. Green spores (with chlorophyll)

1′

1b. Spores with a different colour

2

1’a. Spores with a single aperture (monolete) as a furrow

Onocleopsis

1’b. Spores with a trilete scar present

Osmunda

2a. Spores with a single aperture (monolete) as a furrow

3

2b. Spores with a trilete scar present

42

Monolete spores

3a. Kidney-shaped (or bean-shaped) spores in equatorial view

4

3b. Ellipsoidal, ovoid or spherical spores in equatorial view

12

4a. Spore surface mainly verrucate

5

4b. Spore surface with another main ornamentation

10

5a. Spore surface only verrucate

6

5b. Spore surface verrucate or with other ornamentation

7

6a. Spore surface with perispore adhering to the exospore

Polypodium

6b. Spore surface with loose perispore wall, generally of a smaller size than the previous genus (<55 μm)

Davallia

7a. Spore surface verrucate or granulate

8

7b. Spore surface verrucate, echinate or papillate

9

8a. Spore surface verrucate or granulate

Woodwardia

8b. Spore surface verrucate or granulate, some species echinate

Cystopteris

9a. Spore surface verrucate and/or echinate

Dryopteris

9b. Spore surface verrucate, papillate or rugulate

Thelypteris

10a. Spore surface reticulate or cristate

Cyclosorus

10b. Spore surface rugulate or with other ornamentation

11

11a. Spore surface rugulate forming folds with a reticular appearance

Elaphoglossum.

11b. Spore surface rugulate, granulate or reticulate, rarely wedged

Diplazium

12a. Ellipsoidal to spherical spores

13

12b. Ellipsoidal to ovoid spores

26

13a. Spore surface mainly verrucate

14

13b. Spore surface with another main ornamentation

18

14a. Spore usually yellow or translucent

15

14b. Spore not yellow or translucent

16

15a. Translucent or light yellow spores

Campyloneurum

15b. Yellow spores

Pecluma

16a. Spore surface verrucate, sometimes areolate

Phlebodium

16b. Spore surface verrucate, rugulate, echinate or reticulate

17

17a. Spore surface verrucate or rugulate

Microsorum

17b. Spore surface verrucate, echinate or reticulate

Asplenium

18a. Spore surface mainly papillate

19

18b. Spore surface no papillate

20

19a. Spore surface finely papillate

Tapeinidium

19b. Spore surface papillate or cristate

Matteuccia

20a. Spore surface mainly foveolate

21

20b. Spore surface not foveolate

22

21a. Spore surface foveolate

Lemmaphyllum

21b. Spore surface foveolate, rugulate or even psilate

Lepisorus

22a. Spore surface echinate

Ctenitis

22b. Spore surface not echinate

23

23a. Spore surface psilate, cristate, sometimes with convoluted folds

Lastreopsis

23b. Spore surface psilate, rugulate or granulate

24

24a. Spore surface psilate with globules scattered

Platycerium

24b. Spore surface not always psilate

25

25a. Spore surface psilate or rugulate

Phymatosorus

25b. Spore surface psilate or granulate

Odontosoria

26a. Spore surface mainly verrucate

27

26b. Spore surface not verrucate

34

27a. Spore surface only verrucate

Goniophlebium

27b. Spore surface verrucate or sometimes with other types of ornamentation

28

28a. Spore surface verrucate with tubercles

Nephrolepis

28b. Spore surface without tubercles

29

29a. Spore surface verrucate or echinate

30

29b. Spore surface verrucate or other ornamentation not echinate

31

30a. Spore sometimes with a folded foveolate-echinate surface

Tectaria

30b. Spore surface without a folded foveolate-echinate surface

Colysis

31a. Spore surface verrucate or reticulate

Microgramma

31b. Spore surface verrucate or other ornamentation not reticulate

32

32a. Spore surface verrucate or granulate

Pleopeltis

32b. Spore surface verrucate, rugulate or cristate

33

33a. Spore surface verrucate or rugulate

Stenochlaena

33b. Spore surface verrucate or cristate, sometimes folded

Bolbitis

34a. Spore surface mainly papillate

35

34b. Spore surface not papillate

37

35a. Spore surface only papillate

Vittaria

35b. Spore surface papillate or reticulate

36

36a. Spore surface papillate or reticulate, sometimes areolate or echinate

Polystichum

36b. Spore surface papillate or reticulate, sometimes cristate

Athyrium

37a. Spore surface sometimes echinate

38

37b. Spore surface not echinate

40

38a. Spore surface echinate, some species granulate

Drynaria

38b. Spore surface echinate, cristate or tuberculate

39

39a. Spore surface echinate or cristate

Megalastrum

39b. Spore surface echinate or tuberculate

Hypolepis

40a. Spore surface psilate with prominent perforate wing-like folds

Cyclodium

40b. Spore surface not psilate

41

41a. Spore surface reticulate or vermiculate

Phanerophlebia

41b. Spore rugulate

Blechnum

Trilete spores

42a. Spore surface with long pointed spines or granulate/verrucate sculpture (large megaspore >1000 μm)

Selaginella

42b. Spore surface without long pointed spines and/or other ornamentation

43

43a. Spore surface clearly reticulate

44

43b. Spore surface not reticulate

46

44a. Trilete scar with a thick border

Ophioglossum

44b. Trilete scar without a thick border

45

45a. Reticulum regular, sometimes with small spines

Lycopodium

45b. Reticulum irregular, occasionally near to rugulate

Lycopodiella

46a. Spore with tetrahedral/triangular shape

47

46b. Spore with rounded/globose or subtriangular shape

56

47a. Spore surface sometimes reticulate

48

47b. Spore surface not reticulate

50

48a. Spore surface reticulate, sometimes verrucate or echinate

Pteris

48b. Spore surface reticulate, granulate or psilate

49

49a. Spore surface reticulate or granulate or even psilate

Lindsaea

49b. Spore surface reticulate or granulate, never psilate

Cyathea

50a. Spore surface mainly rugulate

51

50b. Spore surface not rugulate

54

51a. Spore surface rugulate, sometimes folded, spongy in appearance

Botrychium

51b. Spore surface rugulate or psilate

52

52a. Spore surface low rugulate or psilate

Diplopterygium

52b. Spore surface only rugulate

53

53a. Spore surface only low rugulate

Dicranopteris

53b. Spore surface rugulate, sometimes cristate

Pellaea

54a. Spore surface granulate or verrucate

Microlepia

54b. Spore surface not granulate or verrucate

55

55a. Spore surface foveolate

Cnemidaria

55b. Spore surface papillate or even psilate

Alsophila

56a. Spore with rounded/globose shape

57

56b. Spore with a different shape (from rounded-subtriangular to triangular)

60

57a. Spore surface granulate

58

57b. Spore surface not granulate

59

58a. Spore surface simple granulate

Lonchitis

58b. Spore surface granulate (sometimes subtriangular shape)

Odontosoria

59a. Spore surface tuberculate

Taenitis

59b. Spore surface papillate/reticulate (large megaspore >200 μm with floats above and attached massula below containing microspores)

Azolla

60a. Spore with a rounded-subtriangular shape

61

60b. Spore with a subtriangular shape

68

61a. Spore surface with projecting rods by granulate material, more or less striate

Ceratopteris

61b. Spore surface without projecting rods

62

62a. Spore surface papillate

Vittaria

62b. Spore surface not papillate

63

63a. Spores surface granulate or reticulate

64

63b. Spore surface sometimes granulate, rarely reticulate

65

64a. Spore surface granulate or reticulate

Dicksonia

64b. Spore surface granulate or reticulate, some species cristate

Cheilanthes

65a. Spore surface granulate or verrucate, sometimes rugulate

66

65b. Spore surface granulate but never verrucate

67

66a. Spore surface granulate or verrucate

Acrostichum

66b. Spore surface finely granulate or verrucate, sometimes rugulate

Adiantum

67a. Spore surface granulate or cristate, sometimes reticulate

Notholaena

67b. Spore surface granulate, tuberculate, foveolate or even microreticulate

Lophosoria

68a. Spore surface granulate or baculate

Anemia

68b. Spore surface not granulate or baculate, mainly verrucate

69

69a. Spore surface verrucate or reticulate

Dennstaedtia

69b. Spore surface only verrucate

70

70a. Spore surface roughly verrucate

Pteridium

70b. Spore surface uniformly verrucate

Lygodium

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez de la Cruz, D., Sánchez-Reyes, E., Sánchez-Sánchez, J., Sánchez-Agudo, J.Á. (2018). New Insights on Atmospheric Fern Spore Dynamics. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_20

Download citation

Publish with us

Policies and ethics