Skip to main content

Reciprocal Illumination and Fossils Provide Important Perspectives in Plant Evo-devo: Examples from Auxin in Seed-Free Plants

  • Chapter
  • First Online:
  • 1339 Accesses

Abstract

The plant hormone auxin plays an integral role in numerous aspects of plant development, from embryogeny through secondary growth, which has raised the question of whether changes in auxin signaling underlie major morphological changes in land plant evolution. However, the majority of available data on auxin action come from studies of angiosperms, and it is unclear to what extent these data can be applied to other plant lineages, particularly seed-free plants. Here we review the current state of knowledge on auxin and its role in seed-free plant development, with a focus on polar auxin transport, and illustrate the value of using reciprocal illumination approaches that integrate the fossil record for understanding the evolution of plant form and development. Our survey reveals that while there are some differences, particularly between lycophytes and euphyllophytes, the general patterns of polar auxin transport and auxin action appear to be shared among all tracheophytes. Based on these data, we provide insights and testable hypotheses on leaf and rooting system evolution among lycophytes, demonstrating the utility of anatomical fingerprints of development. However, we also find that numerous gaps in our understanding of the roles of auxin in seed-free plants remain that stymie further progress. Filling these gaps will require continuing incremental research on seed-free plant development, from anatomy to developmental genetics, but has broad potential for making significant contributions to our understanding of patterns and processes in plant evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aida M, Beis D, Heidstra R et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis stem cell niche. Cell 119:109–120

    Article  CAS  PubMed  Google Scholar 

  • Albaum HG (1938) Inhibition due to growth hormones in fern prothallia and sporophytes. Am J Bot 25:124–133

    Article  CAS  Google Scholar 

  • Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, and molecular biology, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 531–546

    Chapter  Google Scholar 

  • Aloni R (2010) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht, pp 485–506

    Chapter  Google Scholar 

  • Banks HP (1968) The early history of land plants. In: Drake ET (ed) Evolution and environment. Yale University Press, New Haven, pp 73–107

    Google Scholar 

  • Barkoulas M, Galinha C, Grigg SP et al (2007) From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol 10:660–666

    Article  CAS  PubMed  Google Scholar 

  • Barkoulas M, Hay A, Kougioumoutzi E et al (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Bateman RM, Hilton J, Rudall PJ (2006) Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J Exp Bot 57:3471–3503

    Article  CAS  PubMed  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Bennett T (2015) PIN proteins and the evolution of plant development. Trends Plant Sci 20:498–507

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Hines G, Leyser O (2014) Canalization: what the flux? Trends Genet 30:41–48

    Article  CAS  PubMed  Google Scholar 

  • Berleth T (2001) Top-down and inside-out: directionality of signaling in vascular and embryo development. J Plant Growth Regul 20:14–21

    Article  CAS  Google Scholar 

  • Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4:57–62

    Article  CAS  PubMed  Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA, Mathesius U, Rose RJ et al (2007) Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10:44–51

    Article  CAS  PubMed  Google Scholar 

  • Björklund S, Antti H, Uddestrand I et al (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Bomfleur B, McLoughlin S, Vajda V (2014) Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science 343:1376–1377

    Article  CAS  PubMed  Google Scholar 

  • Bomfleur B, Grimm GW, McLoughlin S (2017) The fossil Osmundales (Royal Ferns) – a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes. PeerJ 5:e3433

    Article  PubMed  PubMed Central  Google Scholar 

  • Bower FO (1885) On the development and morphology of Phylloglossum drummondii. Phil Trans R Soc Lond 176:665–678

    Article  Google Scholar 

  • Bower FO (1935) Primitive land plants, also known as the Archegoniatae. Macmillan, London

    Google Scholar 

  • Boyce CK (2005a) Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology 31:117–140

    Article  Google Scholar 

  • Boyce CK (2005b) The evolutionary history of roots and leaves. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, Amsterdam, pp 479–499

    Chapter  Google Scholar 

  • Boyce CK (2010) The evolution of plant development in a paleontological context. Curr Opin Plant Biol 13:102–107

    Article  PubMed  Google Scholar 

  • Boyce CK, Knoll AH (2002) Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28:70–100

    Article  Google Scholar 

  • Bristow MJ (1962) The controlled in vitro differentiation of callus derived from a fern, Pteris cretica L., into gametophytic or sporophytic tissues. Dev Biol 4:361–375

    Article  CAS  Google Scholar 

  • Byrne TE, Caponetti JD (1992) Morphogenesis in three cultivars of Boston fern. III. Callus production and plantlet differentiation from cell suspensions. Am Fern J 82:12–22

    Article  Google Scholar 

  • Campbell L, Turner S (2017) Regulation of vascular cell division. J Exp Bot 68:27–43

    Article  PubMed  Google Scholar 

  • Cooke TJ, Poli D, Sztein AE et al (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  CAS  PubMed  Google Scholar 

  • Cooke TJ, Poli D, Cohen JD (2004) Did auxin play a crucial role in the evolution of novel body plans during the late Silurian – early Devonian radiation of land plants? In: Hemsley AR, Poole I (eds) The evolution of plant physiology. From whole plants to ecosystems. Elsevier, Amsterdam, pp 85–107

    Chapter  Google Scholar 

  • Cúneo NR, Andreis RR (1983) Estudio de un bosque de licofitas en la Formación Nueva Lubecka, Pérmico de Chubut, Argentina. Implicancias paleoclimáticas y paleogeográficas. Ameghiniana 20:132–140

    Google Scholar 

  • Cusick F (1954) Experimental and analytical studies of pteridophytes. XXV. Morphogenesis in Selaginella willdenowii Baker. II. Angle-meristems and angle-shoots. Ann Bot 18:171–181

    Article  Google Scholar 

  • De Rybel B, Moller B, Yoshida S et al (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24:426–437

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Fischer AM, Roettger M et al (2016) Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytol 209:705–720

    Article  PubMed  CAS  Google Scholar 

  • Deb Y, Marti D, Frenz M et al (2015) Phyllotaxis involves auxin drainage through leaf primordia. Development 142:1992–2001

    Article  CAS  PubMed  Google Scholar 

  • Decombeix A-L, Taylor EL, Taylor TN (2010) Epicormic shoots in a Permian gymnosperm from Antarctica. Int J Plant Sci 171:772–782

    Article  Google Scholar 

  • Dengler NG (2001) Regulation of vascular development. J Plant Growth Regul 20:1–13

    Article  CAS  Google Scholar 

  • Dengler NG (2006) The shoot apical meristem and development of vascular architecture. Can J Bot 84:1660–1671

    Article  CAS  Google Scholar 

  • Dettmer J, Elo A, Helariutta Y (2009) Hormone interactions during vascular development. Plant Mol Biol 69:347–360

    Article  CAS  PubMed  Google Scholar 

  • Durbak A, Yao H, McSteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96

    Article  CAS  PubMed  Google Scholar 

  • Edwards D (1994) Toward an understanding of pattern and process in the growth of early vascular plants. In: Ingram DS, Hudson A (eds) Shape and form in plants and fungi. Academic Press & Linnean Society, London, pp 39–59

    Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley & Sons, New York

    Google Scholar 

  • Escapa IH, Catalano SA (2013) Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. Int J Plant Sci 174:1153–1170

    Article  Google Scholar 

  • Fabregas N, Formosa-Jordan P, Confraria A et al (2015) Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana. PLoS Genet 11:e1005183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finet C, Jaillais Y (2012) AUXOLOGY: when auxin meets plant evo-devo. Dev Biol 369:19–31

    Article  CAS  PubMed  Google Scholar 

  • Floyd SK, Bowman JL (2006) Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr Biol 16:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • Floyd SK, Bowman JL (2010) Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J Plant Res 123:43–55

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg JM, Eggert DA (1969) Petrified Stigmaria from North America: part I. Stigmaria ficoides, the underground portions of Lepidodendraceae. Palaeontographica B 128:1–47

    Google Scholar 

  • Friedman WE, Moore RC, Purugganan MD (2004) The evolution of plant development. Am J Bot 91:1726–1741

    Article  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Fujinami R, Yamada T, Nakajima A et al (2017) Root apical meristem diversity in extant lycophytes and implications for root origins. New Phytol 215:1210–1220

    Article  CAS  PubMed  Google Scholar 

  • Gensel PG (1975) A new species of Sawdonia with notes on the origin of microphylls and lateral sporangia. Am J Bot 136:50–62

    Google Scholar 

  • Gensel PG (2008) The earliest land plants. Annu Rev Ecol Evol Syst 39:459–477

    Article  Google Scholar 

  • Gensel PG, Andrews HN (1984) Plant life in the Devonian. Praeger, New York

    Google Scholar 

  • Gensel PG, Kotyk ME, Basinger JF (2001) Morphology of above- and belowground structures in early Devonian (Pragian–Emsian) plants. In: Gensel PG, Edwards D (eds) Plants invade the land. Columbia University Press, New York, pp 83–102

    Chapter  Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants, 3rd edn. Freeman, New York

    Google Scholar 

  • Gola EM, Jernstedt JA, Zagorska-Marek B (2007) Vascular architecture in shoots of early divergent vascular plants, Lycopodium clavatum and Lycopodium annotinum. New Phytol 174:774–786

    Article  PubMed  Google Scholar 

  • Hao S, Xue J, Liu Z et al (2007) Zosterophyllum Penhallow around the Silurian-Devonian boundary of northeastern Yunnan, China. Int J Plant Sci 168:477–489

    Article  Google Scholar 

  • Harrison CJ (2016) Auxin transport in the evolution of branching forms. New Phytol 215:545. https://doi.org/10.1111/nph.14333

    Article  PubMed  Google Scholar 

  • Harrison CJ (2017) Development and genetics in the evolution of land plant body plans. Philos Trans R Soc B 372:20150490

    Article  Google Scholar 

  • Hejnowicz Z, Kurczyńska EU (1987) Occurrence of circular vessels above axillary buds in stems of woody plants. Acta Soc Bot Pol 56:415–419

    Article  Google Scholar 

  • Hetherington AJ, Dolan L (2016) The evolution of lycopsid rooting structures: conservatism and disparity. New Phytol 215:538–544

    Article  PubMed  Google Scholar 

  • Hetherington AJ, Dubrovski JG, Dolan L (2016) Unique cellular organisation in the oldest root meristem. Curr Biol 26:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou G, Hill JP, Blancaflor EB (2004) Developmental anatomy and auxin response of lateral root formation in Ceratopteris richardii. J Exp Bot 55:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hueber FM (1992) Thoughts on the early lycopsids and zosterophylls. Ann Mo Bot Gard 79:474–499

    Article  Google Scholar 

  • Jasper A, Guerra-Sommer M (1999) Licófitas arborescentes in situ como elementos importantes na definição de modelos deposicionais (Formação Rio Bonito - Bacia do Paraná - Brasil). Pesq Geoci 26:49–58

    Google Scholar 

  • Jernstedt JA, Cutter EG, Lu P (1994) Independence of organogenesis and cell pattern in developing angle shoots of Selaginella martensii. Ann Bot 74:343–355

    Article  Google Scholar 

  • Jones AM (1998) Auxin transport: down and out and up again. Science 282:2201–2202

    Article  CAS  PubMed  Google Scholar 

  • Kasprzewska A, Carter R, Swarup R et al (2015) Auxin influx importers modulate serration along the leaf margin. Plant J 83:705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early diversification of land plants. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kenrick P, Strullu-Derrien C (2014) The origin and early evolution of roots. Plant Physiol 166:570–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidston R, Lang WH (1920) On old red sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang. Trans R Soc Edinb 52:643–680

    Article  Google Scholar 

  • Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L et al (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowska D (1992) The relationships between the primary vascular system and phyllotactic patterns of Anagallis arvensis (Primulaceae). Am J Bot 79:904–913

    Article  Google Scholar 

  • Lacombe B, Achard P (2016) Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 34:1–8

    Article  CAS  PubMed  Google Scholar 

  • Langdale JA (2008) Evolution of developmental mechanisms in plants. Curr Opin Genet Dev 18:368–373

    Article  CAS  PubMed  Google Scholar 

  • Larsson E, Sitbon F, Ljung K et al (2008) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177:356–366

    CAS  PubMed  Google Scholar 

  • Lev-Yadun S (1996) Circular vessels in the secondary xylem of Arabidopsis thaliana (Brassicaceae). IAWA J 17:31–35

    Article  Google Scholar 

  • Lev-Yadun S, Aloni R (1990) Vascular differentiation in branch junctions of trees: circular patterns and functional significance. Trees 4:49–54

    Article  Google Scholar 

  • Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Curr Biol 21:R331–R337

    Article  CAS  PubMed  Google Scholar 

  • Li C-S, Edwards D (1995) A re-investigation of Halle’s Drepanophycus spinaeformis Goepp. from the Lower Devonian of Yunnan Province, southern China. Bot J Linn Soc 118:163–192

    Google Scholar 

  • Li C-S, Hueber FM, Hotton CL (2000) A neotype for Drepanophycus spinaeformis Göppert 1852. Can J Bot 78:889–902

    Google Scholar 

  • Liu C-m, Xu Z-h, Chua N-h (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R et al (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388

    Article  CAS  PubMed  Google Scholar 

  • Lyon AG (1964) Probable fertile region of Asteroxylon mackiei K. and L. Nature 203:1082–1083

    Article  Google Scholar 

  • Ma Y, Steeves TA (1992) Auxin effects on vascular differentiation in ostrich fern. Ann Bot 70:277–282

    Article  CAS  Google Scholar 

  • Matsunaga KKS, Tomescu AMF (2016) Root evolution at the base of the lycophyte clade: insights from an early Devonian lycophyte. Ann Bot 117:585–598

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsunaga KKS, Tomescu AMF (2017) An organismal concept for Sengelia radicans gen. et sp. nov. – morphology and natural history of an early Devonian lycophyte. Ann Bot 119:1097–1113

    Article  PubMed  Google Scholar 

  • Matsunaga KKS, Cullen NP, Tomescu AMF (2017) Vascularization of the Selaginella rhizophore: anatomical fingerprints of polar auxin transport with implications for the deep fossil record. New Phytol 216:419–428

    Article  CAS  PubMed  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    CAS  PubMed  Google Scholar 

  • Meicenheimer RD (1986) Role of parenchyma in Linum usitatissimum leaf trace patterns. Am J Bot 73:1649–1664

    Article  Google Scholar 

  • Miyashima S, Sebastian J, Lee J-Y et al (2013) Stem cell function during plant vascular development. EMBO J 32:178–193

    Article  CAS  PubMed  Google Scholar 

  • Moller B, Weijers D (2009) Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 1:a001545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura T, Gehrke AR, Lemberg J et al (2016) Digits and fin rays share common developmental histories. Nature 537:225–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Partanen JN, Partanen CR (1963) Observations on the culture of roots of the bracken fern. Can J Bot 41:1657–1661

    Article  CAS  Google Scholar 

  • Pigg KB (2001) Isoetalean lycopsid evolution: from the Devonian to the present. Am Fern J 91:99–114

    Article  Google Scholar 

  • Pigg KB, Rothwell GW (1983) Megagametophyte development in the Chaloneriaceae fam. Nov., permineralized Paleozoic Isoetales (Lycopsida). Bot Gaz 144:295–302

    Article  Google Scholar 

  • Poli D (2005) The role of auxin on the evolution of embryo development and axis formation in land plants. PhD Dissertation, University of Maryland

    Google Scholar 

  • Prigge MJ, Clark SE (2006) Evolution of the class III HD-Zip gene family in land plants. Evol Dev 8:350–361

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  CAS  PubMed  Google Scholar 

  • Rayner RJ (1984) New finds of Drepanophycus spinaeformis Goppert from the lower Devonian of Scotland. Trans R Soc Edinb Earth Sci 75:353–363

    Article  Google Scholar 

  • Reinhardt D (2005) Phyllotaxis – a new chapter in an old story about beauty and magic numbers. Curr Opin Plant Biol 8:487–493

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Grones P, Stepanova AN et al (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23:2506–2512

    Article  CAS  PubMed  Google Scholar 

  • Rothwell GW (1995) The fossil history of branching: implications for the phylogeny of land plants. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St. Louis, pp 71–86

    Google Scholar 

  • Rothwell GW, Erwin DM (1985) The rhizomorph apex of Paurodendron: implications for homologies among the rooting organs of Lycopsida. Am J Bot 72:86–98

    Article  Google Scholar 

  • Rothwell GW, Lev-Yadun S (2005) Evidence of polar auxin flow in 375 million-year-old fossil wood. Am J Bot 92:903–906

    Article  CAS  PubMed  Google Scholar 

  • Rothwell GW, Nixon KC (2006) How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes? Int J Plant Sci 167:737–749

    Article  Google Scholar 

  • Rothwell GW, Tomescu AMF (2017) Structural fingerprints of development at the intersection of evolutionary developmental biology and the fossil record. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology – a reference guide. Springer International Publishing, Cham (Switzerland) https://doi.org/10.1007/978-3-319-33038-9_169-1

  • Rothwell GW, Sanders H, Wyatt SE et al (2008) A fossil record for growth regulation: the role of auxin in wood evolution. Ann Mo Bot Gard 95:121–134

    Article  Google Scholar 

  • Rothwell GW, Wyatt SE, Tomescu AMF (2014) Plant evolution at the interface of paleontology and developmental biology: an organism-centered paradigm. Am J Bot 101:899–913

    Article  PubMed  Google Scholar 

  • Rudall PJ, Hilton J, Bateman RM (2013) Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. New Phytol 200:598–614

    Article  PubMed  Google Scholar 

  • Runions A, Tsiantis M, Prusinkiewicz P (2017) A common developmental program can produce diverse leaf shapes. New Phytol 216:401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33:263–275

    Article  Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sachs T, Cohen D (1982) Circular vessels and the control of vascular differentiation in plants. Differentiation 21:22–26

    Article  Google Scholar 

  • Sanders HL, Langdale JA (2013) Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. New Phytol 198:419–428

    Article  CAS  PubMed  Google Scholar 

  • Sanders H, Rothwell GW, Wyatt SE (2009) Key morphological alterations in the evolution of leaves. Int J Plant Sci 170:860–868

    Article  Google Scholar 

  • Sanders H, Rothwell GW, Wyatt SE (2011) Parallel evolution of auxin regulation in rooting systems. Pl Syst Evol 291:221–225

    Article  CAS  Google Scholar 

  • Sawchuk MG, Scarpella E (2013) Polarity, continuity, and alignment in plant vascular strands. J Integr Plant Biol 55:824–834

    Article  CAS  PubMed  Google Scholar 

  • Sawchuk MG, Head P, Donner TJ et al (2007) Time-lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation. New Phytol 176:560–571

    Article  CAS  PubMed  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242

    Article  CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J et al (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweitzer H-J, Giesen P (1980) Uber Taeniophyton inopinatum, Protolycopodites devonicus und Cladoxylon scoparium aus dem Mitteldevon von Wuppertal. Palaeontographica B 173:1–25

    Google Scholar 

  • Schweitzer H-J (1980) Über Drepanophycus spinaeformis Göppert. Bonner Paläobotan Mitt (Selbstverl d Paläobotan Abt d Inst für Paläontologie d Univ Bonn) 7:1–29

    Google Scholar 

  • Shubin NH (2008) Your inner fish. Vintage Books, New York

    Google Scholar 

  • Smith RP, Guyomarc'h S, Mandel T et al (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SY, Collinson ME, Rudall PJ et al (2009) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proc Natl Acad Sci U S A 106:12013–12018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeves TA, Briggs WR (1960) Morphogenetic studies on Osmunda cinnamomea L. The auxin relationships of expanding fronds. J Exp Bot 11:45–67

    Article  CAS  Google Scholar 

  • Stewart WN (1964) An upward look in plant morphology. Phytomorphology 14:120–134

    Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Tomescu AMF (2009) Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci 14:5–12

    Article  CAS  PubMed  Google Scholar 

  • Tomescu AMF (2011) The sporophytes of seed-free vascular plants – major vegetative developmental features and molecular genetic pathways. In: Fernandez H, Kumar A, Revilla MA (eds) Working with ferns. Issues and applications. Springer, New York, pp 67–94

    Chapter  Google Scholar 

  • Tomescu AMF, Escapa IH, Rothwell GW et al (2017) Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis. Ann Bot 119:489–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuominen H, Puech L, Fink S et al (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchi L, Baima S, Morelli G et al (2015) Interplay of HD-ZIP II and III transcription factors in auxin-regulated plant development. J Exp Bot 66:5043–5053

    Article  CAS  PubMed  Google Scholar 

  • Vasco A, Smalls TL, Graham SW et al (2016) Challenging the paradigms of leaf evolution: class III HD-Zips in ferns and lycophytes. New Phytol 212:745–758

    Article  CAS  PubMed  Google Scholar 

  • Wabnik K, Robert HS, Smith RS et al (2013) Modeling framework for the establishment of the apical–basal embryonic axis in plants. Curr Biol 23:2513–2518

    Article  CAS  PubMed  Google Scholar 

  • Walters J, Osborne DJ (1979) Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Regnellidium diphyllum. Planta 146:309–317

    Article  CAS  PubMed  Google Scholar 

  • Walton J (1964) On the morphology of Zosterophyllum and some other early Devonian plants. Phytomorphology 14:155–160

    Google Scholar 

  • Wang Q, Hasson A, Rossmann S et al (2016) Divide et impera: boundaries shape the plant body and initiate new meristems. New Phytol 209:485–498

    Article  CAS  PubMed  Google Scholar 

  • Wangermann E (1967) The effect of the leaf on differentiation of primary xylem in the internode of Coleus blumei Benth. New Phytol 66:747–754

    Article  Google Scholar 

  • Wardlaw CW (1944) Experimental and analytical studies of pteridophytes. IV. Stelar morphology: experimental observations on the relation between leaf development and stelar morphology in species of Dryopteris and Onoclea. Ann Bot 8:387–399

    Article  Google Scholar 

  • Wardlaw CW (1946) Experimental and analytical studies of pteridophytes. VII. Stelar morphology: the effect of defoliation on the stele of Osmunda and Todea. Ann Bot 9:97–107

    Article  Google Scholar 

  • Wendrich JR, Weijers D (2013) The Arabidopsis embryo as a miniature morphogenesis model. New Phytol 199:14–25

    Article  PubMed  Google Scholar 

  • White RA (1971) Experimental and developmental studies of the fern sporophyte. Bot Rev 37:509–540

    Article  Google Scholar 

  • Wilson JP, Montanez IP, White JD et al (2017) Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytol 215:1333. https://doi.org/10.1111/nph.14700

    Article  PubMed  Google Scholar 

  • Wochok ZS, Sussex IM (1973) Morphogenesis in Selaginella. Auxin transport in the stem. Plant Physiol 51:646–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wochok ZS, Sussex IM (1974) Morphogenesis in Selaginella. II. Auxin transport in the root (rhizophore). Plant Physiol 53:738–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wochok ZS, Sussex IM (1976) Redetermination of cultured root tips to leafy shoots in Selaginella willdenowii. Plant Sci Lett 6:185–192

    Article  Google Scholar 

  • Zhou C, Han L, Fu C et al (2013) The trans-acting short interfering RNA3 pathway and NO APICAL MERISTEM antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Plant Cell 25:4845–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Ahlberg PE (2004) The origin of the internal nostril of tetrapods. Nature 432:94–97

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann W (1938) Die Telometheorie. Biologe 7:385–391

    Google Scholar 

  • Zimmermann W (1952) Main results of the “Telome theory”. Palaeobotanist 1:456–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru M. F. Tomescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsunaga, K.K.S., Tomescu, A.M.F. (2018). Reciprocal Illumination and Fossils Provide Important Perspectives in Plant Evo-devo: Examples from Auxin in Seed-Free Plants. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_10

Download citation

Publish with us

Policies and ethics