Advertisement

Basic Open-Source Nonlinear Mixed Integer Programming Based Dynamic Economic Dispatch of Multi-chiller Plants

  • Farkhondeh Jabari
  • Behnam Mohammadi-Ivatloo
Chapter

Abstract

During the extremely hot weather or sudden transient heat waves, air-conditioning systems are the most common energy consumers in the different residential, commercial, industrial, and administrative buildings especially in the tropical regions. Therefore, the economic operation of the cooling systems such as chiller plants will be an effective way to mitigate total electricity requirements of central air-conditioners.

Keywords

Basic open-source nonlinear mixed integer programming Dynamic economic dispatch Multi-chiller plants 

References

  1. 1.
    Lo C-C, Tsai S-H, Lin B-S (2016) Economic dispatch of chiller plant by improved ripple bee swarm optimization algorithm for saving energy. Appl Therm Eng 100:1140–1148CrossRefGoogle Scholar
  2. 2.
    Niknam T, Golestaneh F (2013) Enhanced bee swarm optimization algorithm for dynamic economic dispatch. IEEE Syst J 7(4):754–762CrossRefGoogle Scholar
  3. 3.
    Lee W-S, Lin L-C (2009) Optimal chiller loading by particle swarm algorithm for reducing energy consumption. Appl Therm Eng 29(8):1730–1734CrossRefGoogle Scholar
  4. 4.
    Beghi A, Cecchinato L, Cosi G, Rampazzo M (2012) A PSO-based algorithm for optimal multiple chiller systems operation. Appl Therm Eng 32:31–40CrossRefGoogle Scholar
  5. 5.
    Askarzadeh A, dos Santos Coelho L (2015) Using two improved particle swarm optimization variants for optimization of daily electrical power consumption in multi-chiller systems. Appl Therm Eng 89:640–646CrossRefGoogle Scholar
  6. 6.
    Ardakani AJ, Ardakani FF, Hosseinian S (2008) A novel approach for optimal chiller loading using particle swarm optimization. Energy Build 40(12):2177–2187CrossRefGoogle Scholar
  7. 7.
    Powell KM, Cole WJ, Ekarika UF, Edgar TF (2013) Optimal chiller loading in a district cooling system with thermal energy storage. Energy 50:445–453CrossRefGoogle Scholar
  8. 8.
    dos Santos Coelho L, Klein CE, Sabat SL, Mariani VC (2014) Optimal chiller loading for energy conservation using a new differential cuckoo search approach. Energy 75:237–243CrossRefGoogle Scholar
  9. 9.
    Valian E, Tavakoli S, Mohanna S, Haghi A (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64(1):459–468CrossRefGoogle Scholar
  10. 10.
    Chang Y-C, Lee C-Y, Chen C-R, Chou C-J, Chen W-H, Chen W-H (2009) Evolution strategy based optimal chiller loading for saving energy. Energy Convers Manag 50(1):132–139CrossRefGoogle Scholar
  11. 11.
    Chang Y-C (2005) Genetic algorithm based optimal chiller loading for energy conservation. Appl Therm Eng 25(17):2800–2815CrossRefGoogle Scholar
  12. 12.
    Chow T, Zhang G, Lin Z, Song C (2002) Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build 34(1):103–109CrossRefGoogle Scholar
  13. 13.
    Chang Y-C, Lin J-K, Chuang M-H (2005) Optimal chiller loading by genetic algorithm for reducing energy consumption. Energy Build 37(2):147–155CrossRefGoogle Scholar
  14. 14.
    Beghi A, Cecchinato L, Rampazzo M (2011) A multi-phase genetic algorithm for the efficient management of multi-chiller systems. Energy Convers Manag 52(3):1650–1661CrossRefGoogle Scholar
  15. 15.
    Chang Y-C (2006) An innovative approach for demand side management – optimal chiller loading by simulated annealing. Energy 31(12):1883–1896CrossRefGoogle Scholar
  16. 16.
    Chang Y-C, Chen W-H, Lee C-Y, Huang C-N (2006) Simulated annealing based optimal chiller loading for saving energy. Energy Convers Manag 47(15):2044–2058CrossRefGoogle Scholar
  17. 17.
    Lee W-S, Chen Y-T, Kao Y (2011) Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy Build 43(2):599–604CrossRefGoogle Scholar
  18. 18.
    Chang Y-C, Chan T-S, Lee W-S (2010) Economic dispatch of chiller plant by gradient method for saving energy. Appl Energy 87(4):1096–1101CrossRefGoogle Scholar
  19. 19.
    Chang Y-C (2006) An outstanding method for saving energy-optimal chiller operation. IEEE Trans Energy Convers 21(2):527–532CrossRefGoogle Scholar
  20. 20.
    Wang H (2017) Empirical model for evaluating power consumption of centrifugal chillers. Energy Build 140:359–370CrossRefGoogle Scholar
  21. 21.
    Frey P, Fischer S, Drück H (2014) Artificial neural network modelling of sorption chillers. Sol Energy 108:525–537CrossRefGoogle Scholar
  22. 22.
    Wei X, Xu G, Kusiak A (2014) Modeling and optimization of a chiller plant. Energy 73: 898–907CrossRefGoogle Scholar
  23. 23.
    Labus J, Hernández J, Bruno J, Coronas A (2012) Inverse neural network based control strategy for absorption chillers. Renew Energy 39(1):471–482CrossRefGoogle Scholar
  24. 24.
    Čongradac V, Kulić F (2012) Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation. Energy Build 47:651–658CrossRefGoogle Scholar
  25. 25.
    Chang Y-C, Chen W-H (2009) Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy. Energy 34(4):448–456MathSciNetCrossRefGoogle Scholar
  26. 26.
    dos Santos Coelho L, Mariani VC (2013) Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy Build 59:273–278CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Brooke A, Kendrick D, Meeraus A, Raman R, America U (1998) The general algebraic modeling system. GAMS Development Corporation, vol 1050Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations