Long-Term Smart Grid Planning Under Uncertainty Considering Reliability Indexes

  • Bruno Canizes
  • João Soares
  • Mohammad Ali Fotouhi Ghazvini
  • Cátia Silva
  • Zita Vale
  • Juan M. Corchado
Chapter

Abstract

The electricity sector is fast moving towards a new era of clean generation devices dispersed along the network. On one hand, this will largely contribute to achieve the multi-national environment goals agreed via political means. On the other hand, network operators face new complexities and challenges regarding network planning due to the large uncertainties associated with renewable generation and electric vehicles integration. In addition, due to new technologies such as combined heat and power (CHP), the district heat demand is considered in the long-term planning problem. The 13-bus medium voltage network is evaluated considering the possibility of CHP units but also without. Results demonstrate that CHP, together with heat-only boiler units, can supply the district heat demand and contribute to network reliability. They can also reduce the expected energy not supplied and the power losses cost, avoiding the need to invest in new power lines for the considered lifetime project.

Keywords

Distribution networks Optimization Planning Reliability Smart grid Stochastic systems Uncertainty 

Notes

Acknowledgments

This work has received funding from the EU’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013. Bruno Canizes is supported by FCT Funds through SFRH/BD/110678/2015 PhD scholarship and M. Ali Fotouhi Ghazvini is supported by FCT Funds through SFRH/BD/94688/2013 PhD scholarship.

References

  1. 1.
    Fitiwi DZ, Santos SF, Bizuayehu AW, Shafie-khah M, Catalao JPS (2016) A new dynamic and stochastic distributed generation investment planning model with recourse. In: 2016 IEEE power and energy society general meeting (PESGM). IEEE, pp 1–5Google Scholar
  2. 2.
    Soares J, Fotouhi Ghazvini MA, Borges N, Vale Z (2017) A stochastic model for energy resources management considering demand response in smart grids. Electr Power Syst Res 143:599–610.  https://doi.org/10.1016/j.epsr.2016.10.056 CrossRefGoogle Scholar
  3. 3.
    Wu Z, Zeng P, Zhang X (2016) Two-stage stochastic dual dynamic programming for transmission expansion planning with significant renewable generation and N-k criterion. CSEE J Power Energy Syst 2:3–10.  https://doi.org/10.17775/CSEEJPES.2016.00003 CrossRefGoogle Scholar
  4. 4.
    Gangammanavar H, Sen S (2016) Two-scale stochastic optimization framework for controlling distributed storage devices. IEEE Trans Smart Grid:1–1.  https://doi.org/10.1109/TSG.2016.2616881
  5. 5.
    Cao Y, He M, Wang Z, Tao J, Zhang J (2012) Multiple resource expansion planning in smart grids with high penetration of renewable generation. In: 2012 IEEE third international conference on smart grid communications (SmartGridComm). IEEE, pp 564–569Google Scholar
  6. 6.
    Sauhats A, Petrichenko L, Beryozkina S, Jankovskis N (2016) Stochastic planning of distribution lines. In: 2016 13th international conference on the european energy market (EEM). IEEE, pp 1–5Google Scholar
  7. 7.
    Rong A, Lahdelma R (2007) Efficient algorithms for combined heat and power production planning under the deregulated electricity market. Eur J Oper Res 176:1219–1245.  https://doi.org/10.1016/j.ejor.2005.09.009 CrossRefMATHGoogle Scholar
  8. 8.
    Zhang X, Che L, Shahidehpour M, Alabdulwahab AS, Abusorrah A (2017) Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs. IEEE Trans Smart Grid 8:1658–1667.  https://doi.org/10.1109/TSG.2015.2498166 CrossRefGoogle Scholar
  9. 9.
    Konstantelos I, Strbac G (2015) Valuation of flexible transmission investment options under uncertainty. IEEE Trans Power Syst 30:1047–1055.  https://doi.org/10.1109/TPWRS.2014.2363364 CrossRefGoogle Scholar
  10. 10.
    Soares J, Canizes B, Gazvhini MAF, Vale Z, Venayagamoorthy GK (2017) Two-stage stochastic model using benders decomposition for large-scale energy resources management in smart grids. IEEE Trans Ind Appl:1.  https://doi.org/10.1109/TIA.2017.2723339
  11. 11.
    Ghazvini MAF, Canizes B, Vale Z, Morais H (2013) Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market. Appl Energy 101:667–677.  https://doi.org/10.1016/j.apenergy.2012.07.009 CrossRefGoogle Scholar
  12. 12.
    Gong C, Wang X, Weiqiang X, Tajer A (2013) Distributed real-time energy scheduling in smart grid: stochastic model and fast optimization. IEEE Trans Smart Grid 4:1476–1489.  https://doi.org/10.1109/TSG.2013.2248399 CrossRefGoogle Scholar
  13. 13.
    Su W, Wang J, Roh J (2014) Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans Smart Grid 5:1876–1883.  https://doi.org/10.1109/TSG.2013.2280645 CrossRefGoogle Scholar
  14. 14.
    Eajal AA, Shaaban MF, Ponnambalam K, El-Saadany EF (2016) Stochastic centralized dispatch scheme for AC/DC hybrid smart distribution systems. IEEE Trans Sustain Energy:1–14.  https://doi.org/10.1109/TSTE.2016.2516530
  15. 15.
    Heitsch H, Römisch W (2009) Scenario tree reduction for multistage stochastic programs. Comput Manag Sci 6:117–133MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wu H, Shahidehpour M (2016) A game theoretic approach to risk-based optimal bidding strategies for electric vehicle aggregators in electricity markets with variable wind energy resources. IEEE Trans Sustain Energy 7:374–385.  https://doi.org/10.1109/TSTE.2015.2498200 CrossRefGoogle Scholar
  17. 17.
    Fotouhi Ghazvini MA, Faria P, Ramos S, Morais H, Vale Z (2015) Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market. Energy 82:786–799CrossRefGoogle Scholar
  18. 18.
    Wu H, Shahidehpour M, Alabdulwahab A, Abusorrah A (2015) Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources. IEEE Trans Power Syst 30:2955–2964.  https://doi.org/10.1109/TPWRS.2014.2369473 CrossRefGoogle Scholar
  19. 19.
    Bakirtzis EA, Ntomaris A V., Kardakos EG, Simoglou CK, Biskas PN, Bakirtzis AG (2014) A unified unit commitment – economic dispatch model for short-term power system scheduling under high wind energy penetration. International conference on the European energy market, EEM.  https://doi.org/10.1109/EEM.2014.6861258
  20. 20.
    Nasri A, Kazempour SJ, Conejo AJ, Ghandhari M (2016) Network-constrained AC unit commitment under uncertainty: a benders’ decomposition approach. IEEE Trans. Power Syst 31:412–422.  https://doi.org/10.1109/TPWRS.2015.2409198 CrossRefGoogle Scholar
  21. 21.
    Gröwe-Kuska N, Heitsch H, Römisch W (2003) Scenario reduction and scenario tree construction for power management problems. In: 2003 IEEE Bologna PowerTech – conference proceedings, pp 152–158Google Scholar
  22. 22.
    Momber I, Siddiqui A, Roman TGS, Soder L (2014) Risk averse scheduling by a PEV aggregator under uncertainty. IEEE Trans Power Syst 30:882–891.  https://doi.org/10.1109/TPWRS.2014.2330375 CrossRefGoogle Scholar
  23. 23.
    Majidi-Qadikolai M, Baldick R (2016) Stochastic transmission capacity expansion planning with special scenario selection for integrating N−1 contingency analysis. IEEE Trans Power Syst 31:4901–4912.  https://doi.org/10.1109/TPWRS.2016.2523998 CrossRefGoogle Scholar
  24. 24.
    Nahman JM, Peric DM (2008) Optimal planning of radial distribution networks by simulated annealing technique. IEEE Trans Power Syst 23:790–795.  https://doi.org/10.1109/Tpwrs.2008.920047 CrossRefGoogle Scholar
  25. 25.
    Pereira Junior BR, Mantovani JRS, Cossi AM, Contreras J (2014) Multiobjective multistage distribution system planning using tabu search. IET Gener Transm Distrib 8:35–45.  https://doi.org/10.1049/iet-gtd.2013.0115 CrossRefGoogle Scholar
  26. 26.
    Gallo A (2015) A refresher on net present value. Harv Bus Rev:1–7Google Scholar
  27. 27.
    Bruni AL, Famá R, Siqueira JDO (1998) Análise Do Risco Na Avaliação De Projetos De Investimento: Uma Aplicação Do Método De Monte Carlo. Caderno de Pesquisas em Administração 1–na 6:62–75Google Scholar
  28. 28.
    Gan L, Low SH (2014) Optimal power flow in direct current networks. IEEE Trans Power Syst 29:2892–2904.  https://doi.org/10.1109/TPWRS.2014.2313514 CrossRefGoogle Scholar
  29. 29.
    Warren CA (2003) IEEE Guide for Electric Power Distribution Reliability Indices (2012). In IEEE Std 1366-2012 (Revision of IEEE Std 1366-2003) , pp.~1–43. doi:  10.1109/IEEESTD.2012.6209381
  30. 30.
    Subcommittee D (2012) IEEE guide for electric power distribution reliability indices. Distribution.  https://doi.org/10.1109/IEEESTD.2012.6209381
  31. 31.
    Canizes B, Soares J, Vale Z, Lobo C (2017) Optimal approach for reliability assessment in radial distribution networks. IEEE Syst J 11:1846–1856.  https://doi.org/10.1109/JSYST.2015.2427454 CrossRefGoogle Scholar
  32. 32.
    Wenyuan L, Jiaqi Z, Kaigui X, Xiaofu X (2008) Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation. IEEE Trans Power Syst 23:336–343.  https://doi.org/10.1109/TPWRS.2008.919201 CrossRefGoogle Scholar
  33. 33.
    Conejo AJ, Carrión M, Morales JM (2010) Decision making under uncertainty in electricity markets. Springer, New YorkCrossRefMATHGoogle Scholar
  34. 34.
    Venikov VA, Asambaev SN (1986) Quick estimation of the stability of a process on the basis of its initial stage. Energetika i Transport (Translation available from Allerton Press) 24:23–29Google Scholar
  35. 35.
    Gustafson MW, Baylor JS, Mulnix SS (1988) The equivalent hours loss factor revisited. IEEE Trans Power Syst 3:1502–1508.  https://doi.org/10.1109/59.192959 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bruno Canizes
    • 1
  • João Soares
    • 1
  • Mohammad Ali Fotouhi Ghazvini
    • 1
  • Cátia Silva
    • 1
  • Zita Vale
    • 1
  • Juan M. Corchado
    • 2
    • 3
    • 4
  1. 1.GECAD–Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Institute of Engineering, Polytechnic of Porto (ISEP/IPP)PortoPortugal
  2. 2.University of SalamancaSalamancaSpain
  3. 3.Osaka Institute of TechnologyOsakaJapan
  4. 4.University of Technology Malaysia, Pusat Pentadbiran Universiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations