Skip to main content

Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress

  • Chapter
  • First Online:
Antioxidants and Antioxidant Enzymes in Higher Plants

Abstract

Stress in plants can be defined as any external factor that negatively influences plant growth, productivity, reproductive capacity or survival. As with any living organism, plants have an optimal temperature range at which growth and crop yield are best. Plants also require a certain amount of water for optimal survival; too much water (flooding stress) can cause plant cells to swell and burst, whereas drought stress (too little water) can cause the plant to dry up—a condition called desiccation. If the temperature is too cold for the plant, it can lead to cold stress, also called chilling stress. Cold temperatures can affect the amount and rate of uptake of water and nutrients, leading to cell desiccation and starvation. Hot weather can affect plants adversely, too. Intense heat can cause plant cell proteins to break down, a process called denaturation. Cell walls and membranes can also ‘melt’ under extremely high temperatures, and the permeability of the membranes is affected. Other abiotic stresses are less obvious, but can be equally as lethal. In farming systems, the use of agrochemicals such as fertilizers and pesticides, either in excess or in deficit, can also cause abiotic stress to the plant. The plant is affected through an imbalance of nutrition or via toxicity. High amounts of salt taken up by a plant can lead to cell desiccation, since elevated levels of salt outside a plant cell will cause water to leave the cell, a process called osmosis. Plant uptake of heavy metals can lead to complications with basic physiological and biochemical activities such as photosynthesis. Soil salinization also affects plants’ osmotic potential and inhibits many of a plant’s cellular functions including photosynthesis and stomatal opening. Such different types of stresses can ultimately cause closure of stomata, disrupt the membrane-bound electron transport system, damage of photosynthetic machinery and the production of toxic active oxygen species. Over generations, many plants have mutated and evolved with different mechanisms to counter stress effects. These include a range of different mechanisms such as facultative inducible metabolic adaptations (i.e., excretion of organic acids; osmotic adjustment; accumulation of sugars, amino acids and polyols; induction of glycolytic enzymes; γ-aminobutyrate (GABA) accumulation; induction of fatty acid desaturases and heat shock proteins; activation of phytochelatin synthase and metallothioneins; activation of alternative respiratory pathways; induction of polyamine synthesis; production of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate and glutathione reductases) and ecophysiological (carbon assimilation) adaptations such as increased isoprene synthesis, which includes the large and crucial group of carotenoids. Carotenoids are essential in different plant processes and are potential antioxidants during plant stress. They act as light harvesters, quenchers and scavengers of triplate state chlorophylls and singlet oxygen species, dissipators of excess harmful energy during stress condition and membrane stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latef AAH, Abu-Alhmad MF (2013) Strategies of copper tolerance in root and shoot of broad bean (Vicia faba L.). Pak J Agri Sci 50:223–328

    Google Scholar 

  • Abu-Romman S, Shatnawi M, Shibli R (2010) Allelopathic effects of spurge (Euphorbia hierosolymitana) on wheat (Triticum durum). Am Eur J Agri Environ Sci 7:298–302

    CAS  Google Scholar 

  • Ahmad P, Latef AAA, Abdallah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    Google Scholar 

  • Ahn C, Pai H (2008) Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. Plant Mol Biol 66:503–517

    Article  CAS  PubMed  Google Scholar 

  • Akcin A, Yalcin E (2016) Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp. prostrata (Amaranthaceae). Braz J Bot 39:101–106

    Article  Google Scholar 

  • Al Hassan M, Martínez Fuertes M, Ramos Sańchez FJ, Vicente O, Boscaiu M (2015) Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notul Bot Horti Agrobotanici Cluj-Napoca 43:1–11

    Google Scholar 

  • Al Hassan M, Lopez-Gresa MP, Boscaiu M, Vicente O (2016) Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Funct Plant Biol 43:949–960

    Article  CAS  Google Scholar 

  • Al Hassan M, Chaura J, Donat-Torres M, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plant 9(2)

    Google Scholar 

  • Algandaby M, El-Darier S (2016) Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia. Saud J Biol Sci https://doi.org/10.1016/j.sjbs.2016.02.013

    Google Scholar 

  • Arivalagan M, Somasundaram R (2015) Effect of popiconazole and salicylic acid on the growth and photosynthetic pigments variations in Sorghum bicolour L. under drought condition. J Plant Stress Physiol 7:17–23

    Google Scholar 

  • Ashraf MA (2012) Waterlogging stress in plants: a review. Afr J Agri Res 7:1976–1981

    Google Scholar 

  • Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnol J 15:195–205

    Article  CAS  Google Scholar 

  • Ben Abdallah S, Aung B, Amyot L, Lalin I, Lachâal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38:72

    Article  CAS  Google Scholar 

  • Berera R, Herrero C, van Stokkum I, Vengris M, Kodis G, Palacios RE, van Amerongen H, van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM (2006) A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proc Natl Acad Sci USA 103:5343–5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berera R, van Stokkum I, d’Haene S, Kennis J, van Grondelle R, Dekker J (2009) A mechanism of energy dissipation in Cyanobacteria. Biophy J 96:2261–2267

    Article  CAS  Google Scholar 

  • Berera R, van Stokkum I, Kennis J, Grondelle R, Dekker J (2010) The light-harvesting function of carotenoids in the cyanobacterial stress-inducible IsiA complex. Chem Phy 373:65–70

    Article  CAS  Google Scholar 

  • BGS (2017) Man-made (anthropogenic) greenhouse gases | CCS | Climate change | Discovering Geology | British Geological Survey (BGS). [online] Bgs.ac.uk. Available at: http://www.bgs.ac.uk/discoveringGeology/climateChange/CCS/Anthropogenic.html. Accessed 19 Aug 2017

  • Boden TA, Marland G, Andres RJ (2010) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

    Google Scholar 

  • Bogatek R, Gniazdowska A (2007) ROS and phytohormones in plant-plant allelopathic interaction. Plant Signal Behav 2:317–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes-Esquivel N, Halliday K, Martinez-Garcia J, Rodriguez-Concepcion M (2015) Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and co-factors. Plant Physiol 169:1584–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunetti C, Guidi L, Sebastiani F, Tattini M (2015) Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environ Exp Bot 119:54–62

    Article  CAS  Google Scholar 

  • Buchner O, Roach T, Gertzen J, Schenk S, Karadar M, Stöggl W, Miller R, Bertel C, Neuner G, Kranner I (2017) Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments, singlet oxygen scavenging, α-tocopherol and plant hormones. Environ Exp Bot 133:159–175

    Article  CAS  Google Scholar 

  • Chang W, Song H, Liu H, Liu P (2013) Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 17:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R (2013) Antagonistic basic Helix-Loop-Helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25:1657–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary ML, Patel VB, Siddiqui WM, Verma RB (2015) Climate dynamics in horticultural science. Apple Academic Press, Oakville

    Book  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  CAS  Google Scholar 

  • Cicevan R, Al Hassan M, Sestras A, Prohens J, Vicente O, Sestras R, Boscaiu M (2016) Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). Peer J 4:e2133

    Article  PubMed  PubMed Central  Google Scholar 

  • Corniani N, Velini E, Silva F, Nanayakkara N, Witschel M, Dayan F (2014) Novel bioassay for the discovery of inhibitors of the 2-C-Methyl-D-erythritol 4-Phosphate (MEP) and Terpenoid Pathways leading to carotenoid biosynthesis. PLoS ONE 9:e103704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Couso I, Vila M, Vigara J, Cordero B, Vargas M, Rodríguez H, León R (2012) Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Europ J Phycol 47:223–232

    Article  CAS  Google Scholar 

  • Dayan FE, Romagni JG, Duke SO (2000) Investigation of the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094

    CAS  Google Scholar 

  • Doupis G, Bertaki M, Psarras G, Kasapakis I, Chartzoulakis K (2013) Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes. Scient Horticul 153:150–156

    Article  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trend Plant Sci 6:78–84

    Article  CAS  Google Scholar 

  • Esmon C, Pedmale U, Liscum E (2005) Plant tropisms: providing the power of movement to a sessile organism. Int J Develop Biol 49:665–674

    Article  CAS  Google Scholar 

  • Esteban R, Moran J, Becerril J, García-Plazaola J (2015) Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environ Exp Bot 119:63–75

    Article  CAS  Google Scholar 

  • Ferreira AG (2004) Interferência: competição e alelopatia. In: Ferreira AG, Borghetti F (eds) Germinação: Do básicoaoaplicado. Artmed, Porto Alegre, pp 251–262

    Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flores-Pérez Ú, Pérez-Gil J, Closa M, Wright L, Botella-Pavía P, Phillips MA, Ferrer A, Gershenzon J, Rodríguez-Concepción M (2010) Pleiotropic regulatory Locus 1 (PRL1) integrates the regulation of sugar responses with Isoprenoid metabolism in Arabidopsis. Mol Plant 3:101–112

    Article  PubMed  CAS  Google Scholar 

  • Frank H, Cogdell R (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    Article  CAS  PubMed  Google Scholar 

  • García-Plazaola J, Portillo-Estrada M, Fernández-Marín B, Kännaste A, Niinemets Ü (2017) Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. Environ Exp Bot 133:87–97

    Article  PubMed  CAS  Google Scholar 

  • Gómez-García M, Ochoa-Alejo N (2013) Biochemistry and molecular biology of carotenoid biosynthesis in Chili Peppers (Capsicum spp.). Int J Mol Sci 14:19025–19053

    Article  CAS  Google Scholar 

  • Grene R, Li P, Bohnert H (2010) Elevated CO2 and ozone: their effects on photosynthesis. In: Rebeiz C, Benning C, Bohnert H, Daniell H, Hoober J, Lichtenthaler H, Portis A, Tripathy B (eds) The chloroplast: basics and applications. Springer, Berlin, pp 323–346

    Chapter  Google Scholar 

  • Griffiths M, Sistrom W, Cohen-Bazire G, Stanier R (1995) Function of carotenoids in photosynthesis. Nature 176:1211–1214

    Article  Google Scholar 

  • Gul H, Kinza S, Shinwari ZK, Hamayun M (2017) Effect of selenium on the biochemistry of Zea mays under salt stress. Pak J Bot 49:25–32

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom Article ID:701596

    Google Scholar 

  • Hammad SAR, Ali OAM (2014) Physiological and studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann Agric Sci 59:133–145

    Google Scholar 

  • Havaux M (2013) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    Article  PubMed  CAS  Google Scholar 

  • He B, Guo T, Huang H, Xi W, Chen X (2017) Physiological responses of Scaevola aemula seedlings under high temperature stress. S Afr J Bot 112:203–209

    Article  Google Scholar 

  • Hussain MI, Reigosa MJ (2011) Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J Exp Bot 62:453–4545

    Article  CAS  Google Scholar 

  • Hussain I, Singh N, Singh A, Singh H (2017) Allelopathic potential of sesame plant leachate against Cyperus rotundus L. Ann Agrar Sci 15:141–147

    Article  Google Scholar 

  • Ibrahim M, Ahmad N, Shinwari-Khan Z, Bano A, Ullah F (2013) Allelopathic assessment of genetically modified and non-modified maize (Zea mays L.) on physiology of wheat (Triticum aestivum L.). Pak J Bot 45:235–240

    Google Scholar 

  • Jackson M (2015) Elevated temperature effects on carotenoid biosynthesis in the diploid strawberry, Fragaria vesca. Ph.D. Thesis, University of Maryland, USA

    Google Scholar 

  • Jain R, Singh A, Singh S, Singh SP, Srivastava VK, Chandra A, Pathak AD, Solomon S (2017) Physio-Biochemical characterization of sugarcane genotypes for waterlogging tolerance. World J Agric Sci 13:90–97

    Google Scholar 

  • Jin C, Ji J, Zhao Q, Ma R, Guan C, Wang G (2015) Characterization of lycopene β-cyclase gene from Lycium chinense conferring salt tolerance by increasing carotenoids synthesis and oxidative stress resistance in tobacco. Mol Breed 35:228

    Article  CAS  Google Scholar 

  • Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidialisoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    Article  CAS  PubMed  Google Scholar 

  • Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Develop Biol 91:29–66

    Article  CAS  Google Scholar 

  • Kang L, Ji CY, Kim SH, Ke Q, Park SC, Kim HS, Lee HU, Lee JS, Park WS, Ahn MJ, Lee HS, Deng X, Kwak SS (2017) Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. Plant Physiol Biochem 117:24–33

    Article  CAS  PubMed  Google Scholar 

  • Karnosky D, Ceulemans R, Scarascia-Mugnozza G, Innes J (2001) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. IUFRO Series, No. 8. CAB International, Wallingford

    Google Scholar 

  • Kim SH, Kim YH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013) Downregulation of the lycopene ε{lunate}-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweet potato transgenic calli. Physiol Plant 147:432–442

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Jeong JC, Park S, Bae JY, Ahn MJ, Lee HS, Kwak SS (2014) Down-regulation of sweetpotato lycopene β-cyclase gene enhances tolerance to abiotic stress in transgenic calli. Mol Biol Rep 41:8137–8148

    Article  CAS  PubMed  Google Scholar 

  • Kiokias S, Proestos C, Varzakas T (2016) A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Curr Res Nutr Food Sci 4:25–37

    Article  Google Scholar 

  • Knox J, Dodge A (1985) Isolation and activity of the photodynamic pigment hypericin. Plant Cell Environ 8:19–25

    Article  CAS  Google Scholar 

  • Kumar P, Pal M, Joshi R, Sairam RK (2013) Yield, growth and physiological responses of mung bean [Vigna radiate (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol Mol Biol Plant 19:209–220

    Article  CAS  Google Scholar 

  • Kuzuyama T, Seto H (2012) Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Japan Acad Ser B 88:41–52

    Article  CAS  Google Scholar 

  • Ladhari A, Omezzine F, Haouala R (2014) The impact of Tunisian Capparidaceae species on cytological, physiological and biochemical mechanisms in lettuce. S Afr J Bot 93:222–230

    Article  CAS  Google Scholar 

  • Lau O, Deng X (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Quail P (2011) PIFs: pivotal components in a cellular signaling hub. Trend Plant Sci 16:19–28

    Article  CAS  Google Scholar 

  • Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso J, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-Chan R, López-Meyer M, Osuna-Enciso T, Sañudo-Barajas J, Heredia J, León-Félix J (2017) Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ Exp Bot 139:143–151

    Article  CAS  Google Scholar 

  • Li R, Kang C, Song X, Yu L, Liu D, He S, Zhai H, Liu Q (2017) A ζ-carotene desaturase gene, IbZDS, increases β-carotene and lutein contents and enhances salt tolerance in transgenic sweetpotato. Plant Sci 262:39–51

    Article  CAS  PubMed  Google Scholar 

  • Lipko A, Swiezewska E (2017) Isoprenoid generating systems in plants-A handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process. Prog Lipid Res 63:70–92

    Article  CAS  Google Scholar 

  • Liu RQ, Xu XJ, Wang S, Shan CJ (2015) Lanthanum improves salt tolerance of maize seedlings. Photosynthetica 54:148–151

    Article  CAS  Google Scholar 

  • Llorente B, Martinez-Garcia J, Stange C, Rodriguez-Concepcion M (2017) Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr Opi Plant Biol 37:49–55

    Article  CAS  Google Scholar 

  • Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M, Wahyudi A, Motohashi R, Kato M (2013) Enzymatic formation of citraurin from Cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Plant Physiol 163:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majer E, Llorente B, Rodríguez-Concepción M, Daròs J (2017) Rewiring carotenoid biosynthesis in plants using a viral vector. Sci Rep 7:41645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manivannan P, Rabert GA, Rajasekar M, Somasundaram R (2014) Drought stress-induced modification on growth and pigments composition in different genotypes of Helianthus annuus L. Curr Bot 5:7–13

    Google Scholar 

  • Maryland G, Boden TA, Andres RJ (2008) Global, regional and national fossil fuel CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA

    Google Scholar 

  • Mattos LM, Moretti CL (2016) Oxidative stress in plants under drought conditions and the role of different enzymes. Enzym Eng 5:136

    Google Scholar 

  • Maurya KV, Srinvasan R, Ramesh N, Anbalagan M, Gothandam KM (2015) Expression of carotenoid pathway genes in three capsicum varieties under salt stress. Asian J Crop Sci 7:286–294

    Article  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Nanayakkara NPD, Khan IA, Abourashed EA, Romagni JG, Duke SO, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59:281–288

    Article  Google Scholar 

  • Melo HF, de Souza ER, Duarte HHF, Cunha JC, Santos HRB (2017) Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water. Revist Brasil Engen Agrícola Ambient 21:38–43

    Article  Google Scholar 

  • Mibei E, Ambuko J, Giovannoni J, Onyango A, Owino W (2016) Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Sci Nutr 5:113–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moussa ID, Chtourou H, Karray F, Sayadi S, Dhouib A (2017) Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Biorese Technol 238:325–332

    Article  CAS  Google Scholar 

  • NCBI (2017) National Center for Biotechnology Information. U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD20894, USA. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/isopentenyl_pyrophosphate#section=Chemical-and-Physical-Properties. Accessed on 13-06-2017

  • Nisar N, Li L, Lu S, Khin N, Pogson B (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  PubMed  Google Scholar 

  • Odom A (2011) Five Questions about non-mevalonate isoprenoid biosynthesis. PLoS Patho 7:e1002323

    Article  CAS  Google Scholar 

  • Ozcubukcu S, Ergun N (2013) Effects of waterlogging and nitric oxide on chlorophyll and carotenoid pigments of wheat. J Food Agric Environ 11:2319–2323

    Google Scholar 

  • Paliwal C, Mitra M, Bhayani K, Bharadwaj S, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Biores Technol 244:1216–1226

    Article  CAS  Google Scholar 

  • Pandey D, Mishra N, Singh P (2005) Relative phytotoxicity of hydroquinone on rice (Oryza sativa L.) and associated aquatic weed green musk chara (Chara zeylanica Wild.). Pest Biochem Physiol 83:82–96

    Article  CAS  Google Scholar 

  • Percival G (2017) The influence of glyphosate on carotenoid pigments, reactive oxygen species scavenging enzymes and secondary stress metabolites within leaf tissue of three Acer species. Urban Forest Urban Green 24:19–25

    Article  Google Scholar 

  • Perlík V, Seibt J, Cranston L, Cogdell R, Lincoln C, Savolainen J, Sanda F, Mancal T, Hauer J (2015) Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phy 142:212434

    Article  CAS  Google Scholar 

  • Phillips M, Leon P, Boronat A, Rodriguez-Concepcion M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trend Plant Sci 13:619–623

    Article  CAS  Google Scholar 

  • Polivka T, Sundstrom V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Inform 35(24)

    Google Scholar 

  • Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant Isoprenoid metabolism. Mol Plant 5:964–967

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Xu X, Chen W, Jiang H, Jin Y, Liu W, Fu Z (2009) Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere 75:368–375

    Article  CAS  PubMed  Google Scholar 

  • Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC (2014) Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol 16:133–146

    Article  CAS  PubMed  Google Scholar 

  • Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos A, Coesel S, Marques A, Rodrigues M, Baumgartner A, Noronha J, Rauter A, Brenig B, Varela J (2008) Isolation and characterization of a stress-inducible Dunaliella salina Lcy-β gene encoding a functional lycopene β-cyclase. App Microbiol Biotechnol 79:819–828

    Article  CAS  Google Scholar 

  • Rebeiz C, Benning C, Bohnert H, Daniell H, Hoober K, Lichtenthaler H, Portis A (2010) The chloroplast. Springer, Berlin

    Google Scholar 

  • Rhodes D, Nadolska-Orczyk A (2001) Plant stress physiology. In: Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Rizvi SJH, Haque H, Singh UK, Rizvi V (1992) A discipline called allelopathy. In: Rizvi SJH, Rizvi H (eds) Allelopathy: basic and applied aspects. Chapman & Hall, London, pp 1–10

    Chapter  Google Scholar 

  • Rodríguez-Concepción M (2014) Plant isoprenoids: a general overview. In: Concepcion MR (ed) Plants isoprenoids: method and protocols. Springer, Berlin, pp 1–5

    Google Scholar 

  • Romagni J, Duke S, Dayan F (2000) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol 123:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola M, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arab Book 10:e0158

    Article  Google Scholar 

  • Savoi S, Wong DCJ, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD (2016) Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol 16:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenck C, Nadella V, Clay S, Lindner J, Abrams Z, Wyatt S (2013) A proteomics approach identifies novel proteins involved in gravitropic signal transduction. Amer J Bot 100:194–202

    Article  CAS  Google Scholar 

  • Schiop S, Al Hassan M, Sestras A, Boscaiu M, Sestras R, Vicente O (2015) Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PLoS ONE 10:e0135419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweiggert R, Ziegler J, Metwali E, Mohamed F, Almaghrabi O, Kadasa N, Carle R (2017) Carotenoids in mature green and ripe red fruits of tomato (Solanum lycopersicum L.) grown under different levels of irrigation. Arch Biol Sci 69:305–314

    Article  Google Scholar 

  • Seemann M, Tse Sum Bui B, Wolff M, Miginiac-Maslow M, Rohmer M (2006) Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett 580:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Shankar V, Kumar D, Agrawal V (2015) Assessment of antioxidant enzyme activity and mineral nutrients in response to NaCl stress and its amelioration through glutathione in chickpea. Appl Biochem Biotechnol 178:267–284

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Hall D (1993) The role of carotenoids in protection against photoinhibition. In: Photosynthesis: Photoreactions to Plant Productivity [online], pp 469–478. Available at: . Accessed 19 Aug 2017

    Google Scholar 

  • Shen J, Jiang C, Yan Y, Liu B, Zu C (2017) Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet Mol Res 16(1)

    Google Scholar 

  • Shi Y, Guo J, Zhang W, Jin L, Liu P, Chen X, Li F, Wei P, Li Z, Li W, Wei C, Zheng Q, Chen Q, Zhang J, Lin L, Snyder JH, Wang R (2015a) Cloning of the Lycopene β-cyclase gene in Nicotiana tabacum and its overexpression confers salt and drought tolerance. Int J Mol Sci 16:30438–30457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Liu P, Xia Y, Wei P, Li W, Zhang W, Chen X, Cao P, Xu Y, Jin L, Li F, Luo Z, Wei C, Zhang J, Xie X (2015b) Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum. Acta Physiol Plant 37:210

    Article  CAS  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Kingston-Smith A, Feller U (2012) Involvement of the leaf antioxidant system in the response to soil flooding in two Trifolium genotypes differing in their tolerance to waterlogging. Plant Sci 183:43–49

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2014) Plant stress physiology. In: Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Sudrajat DJ, Siregar IZ, Khumaida N, Siregar UJ, Mansur I (2015) Adaptability of White Jabon(Anthocephaluscadamba MIQ.) seedling from 12 populations to drought and waterlogging. Agrivita 37:130–143

    Article  Google Scholar 

  • Szymańska R, Ślesak I, Orzechowska A, Kruk J (2017) Physiological and biochemical responses to high light and temperature stress in plants. Environ Exp Bot 139:165–177

    Article  CAS  Google Scholar 

  • Tabatabaei S, Ehsanzadeh P (2016) Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54:340–350

    Article  CAS  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-Carotene. Plant Cell Physiol 55:1216–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian F, Wang W, Liang C, Wang X, Wang G, Wang W (2017) Over accumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress. Crop J 5:73–82

    Article  Google Scholar 

  • Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA 107:11626–11631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo-Ortiz G, Johansson H, Lee K, Bou-Torrent J, Stewart K, Steel G, Rodriguez-Concepcion M, Halliday KJ (2014) The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet 10:e1004416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tritsch D, Hemmerlin A, Bach T, Rohmer M (2009) Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett 584:129–134

    Article  CAS  Google Scholar 

  • Statistica (2018) Cement production globally and in the U.S. from 2010 to 2017 (in million metric tons). Available at: http://www.statista.com/statistics/219343/ cement-production-worldwide accessed on 11/02/2018

  • Rammed Earth Consulting (2018) Cement and CO2 Emissions. Available at: http://rammedearthconsulting.com/rammed-earth-cement-co2.htm. Accessed on 11/02/2018

  • Uarrota V, Severino R, Maraschin M (2011) Maize landraces (Zea mays L.): a new prospective source for secondary metabolite production. Int J Agric Res 6:218–226

    Article  CAS  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annl Rev Plant Biol 64:665–700

    Article  CAS  Google Scholar 

  • Wang M, Shi S, Lin F, Hao Z, Jiang P, Dai G (2012) Effects of soil water and nitrogen on growth and photosynthetic response of manchurian ash (Fraxinus mandshurica) seedlings in Northeastern China. PLoS ONE 7:e30754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong C, Teoh M, Phang S, Lim P, Beardall J (2015) Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from Polar, temperate and tropical environments: differential impacts on damage and repair. PLoS ONE 10:e0139469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worrell E, Price L, Martin N, Hendriks C, Meida L (2001) Carbon dioxide emissions from the global cement industry. Annl Rev Energy Environ 26:303–329

    Google Scholar 

  • Wu J, Ji J, Wang G, Wu G, Diao J, Li Z, Chen X, Chen Y, Luo L (2015) Ecotopic expression of the Lyciumbarbarum β-carotene hydroxylase gene (chyb) enhances drought and salt stress resistance by increasing xanthophyll cycle pool in tobacco. Plant Cell Tiss Organ Cult 121:559–569

    Article  CAS  Google Scholar 

  • Xu C, Mou B (2016) Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. J Am Soc Hort Sci 141:12–21

    CAS  Google Scholar 

  • Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS (2014) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83

    Article  CAS  PubMed  Google Scholar 

  • Young A (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    Article  CAS  Google Scholar 

  • Zhang P, Li Z, Lu L, Xiao Y, Liu J, Guo J, Fang F (2017) Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochim Acta Part A Mol Biomol Spectro 181:30–38

    Article  CAS  Google Scholar 

  • Zhao L, Chang W, Xiao Y, Liu H, Liu P (2013a) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Ann Rev Biochem 82:497–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Wang G, Ji J, Jin C, Wu W, Zhao J (2013) Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco. J Plant Biochem Biotechnol 23:190–198

    Google Scholar 

  • Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M (2014) Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot 66:1477–1488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgílio Gavicho Uarrota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uarrota, V.G., Stefen, D.L.V., Leolato, L.S., Gindri, D.M., Nerling, D. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_10

Download citation

Publish with us

Policies and ethics