Skip to main content

Plant Superoxide Dismutases: Function Under Abiotic Stress Conditions

  • Chapter
  • First Online:
Antioxidants and Antioxidant Enzymes in Higher Plants

Abstract

Superoxide dismutases (SODs) are a family of metalloenzymes that catalyze the dismutation or disproportionation of superoxide radicals (\( {{\text{O}}_{2}}^{ \cdot - } \)) into molecular oxygen (O2) and hydrogen peroxide (H2O2). In plants, essentially, there are three groups of SODs depending on the prosthetic metals in their active sites, either: copper and zinc (Cu,Zn-SODs); manganese (Mn-SODs); or iron (Fe-SODs). Different plant SODs have been isolated and characterized, and many cDNAs and genes for SODs have been identified and characterized. SODs have an important function in plant physiology as a result of the double role of reactive oxygen species (ROS), as signals in important transduction pathways and as inducers of cellular damage when overproduced at high concentrations. In metabolic reactions, superoxide radicals are modulated by SODs but in their enzymatic reaction the key metabolite and signaling molecule H2O2 is produced, an important transduction signal in response to abiotic and biotic stresses and in diverse physiological processes. In general, abiotic stresses in plants induce the generation of ROS that can produce cellular oxidative damage when overproduced in high amounts. After abiotic stress treatment, those cultivars more resistant/tolerant usually show an enhanced activity of antioxidative enzymes, including SODs. Different reports are described on the response of SODs to abiotic stress produced in plants by heavy metals, salinity and drought, xenobiotics, low and high temperature, high light intensity, ozone and atmospheric contaminants, and mechanical stress. The genetic manipulation of plants with altered SOD activity to produce more oxidative stress-tolerant phenotypes that could be used to improve the stress tolerance of economically important plants are briefly examined. Finally, the effect of nitric oxide-mediated post-translational modifications of SODs on their enzymatic activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

cGMP:

Cyclic guanosine monophosphate

DAR:

Dehydroascorbate reductase

GR:

Glutathione reductase

H2O2 :

Hydrogen peroxide

MDAR:

Monodehydroascorbate reductase

NBT:

Nitroblue tetrazolium

NO:

Nitric oxide

\( {{\text{O}}_{2}}^{ \cdot - } \) :

Superoxide radical

1O2 :

Singlet oxygen

O3 :

Ozone

·OH:

Hydroxyl radical

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

SOD:

Superoxide dismutase

SO2 :

Sulfur dioxide

2,4-D:

2,4-dichlorophenoxyacetic acid

References

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell Environ 35:281–295

    Article  CAS  Google Scholar 

  • Allen R (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almansa MS, del Río LA, Alcaraz CF, Sevilla F (1989) Isoenzyme pattern of superoxide dismutase in different varieties of Citrus plants. Physiol Plant 76:563–568

    Article  CAS  Google Scholar 

  • Almansa MS, Palma JM, Yáñez J, del Río LA, Sevilla F (1991) Purification of an iron-containing superoxide dismutase from a Citrus plant, Citrus limonum R. Free Radic Res Commun 12–13:319–328

    Article  Google Scholar 

  • Almansa MS, del Río LA, Sevilla F (1994) Characterization of an iron-containing superoxide dismutase from a higher plant, Citrus limonum. Physiol Plant 90:339–347

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • An Y, Shen Y, Zhang Z (2009) Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves. J For Res 20:156–160

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K, Urano M, Takahashi M (1973) Subcellular location of superoxide dismutase in spinach leaves and preparation and properties of crystalline spinach superoxide dismutase. Eur J Biochem 36:257–266

    Article  CAS  PubMed  Google Scholar 

  • Barón M, Sandmann G (1988) Activities of Cu-containing proteins in Cu-depleted pea leaves. Physiol Plant 72:801–806

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Paris FJ, Sandalio LM, del Río LA (1989) Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L) Walp. Plant Physiol 90:1286–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Bridges SM, Salin ML (1981) Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol 68:275–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno P, Varela J, Giménez-Gallego G, del Río LA (1995) Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Considine MJ, Sandalio LM, Foyer CH (2015) Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann Bot 116:469–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199:633–635

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Gómez M, Hernández JA, del Río LA (1993) Metabolism of activated oxygen in leaf peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J Plant Physiol 141:160–165

    Article  CAS  Google Scholar 

  • Corpas FJ, Sandalio LM, del Río LA, Trelease RN (1998) Copper–zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants. New Phytol 138:307–314

    Article  CAS  Google Scholar 

  • Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013a) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2013b) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:29

    Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegum F (2000) Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Daza MC, Sandalio LM, Quijano-Rico M, del Río LA (1993) Isoenzyme pattern of superoxide dismutase in coffee leaves from cultivars susceptible and resistant to the rust Hemileia vastatrix. J Plant Physiol 141:521–526

    Article  CAS  Google Scholar 

  • de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ (2017) Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. J Plant Physiol 218:196–205

    Article  PubMed  CAS  Google Scholar 

  • del Río LA (1983) Metalloenzymes as biological markers for the appraisal of micronutrient imbalances in higher plants. Life Chem Rep 2:1–34

    Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376

    PubMed  Google Scholar 

  • del Río LA, Puppo A (2009) Reactive oxygen species in plant signaling. Springer, Berlin

    Google Scholar 

  • del Río LA, Sevilla F, Gómez M, Yáñez J, López-Gorgé J (1978) Superoxide dismutase: an enzyme system for the study of micronutrient interactions in plants. Planta 140:221–225

    Article  PubMed  Google Scholar 

  • del Río LA, Lyon DS, Olah I, Glick B, Salin ML (1983) Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 158:216–224

    Google Scholar 

  • del Río LA, Sandalio LM, Yáñez J, Gómez M (1985) Induction of a manganese-containing superoxide dismutase in leaves of Pisum sativum L. by high nutrient levels of zinc and manganese. J Inorg Biochem 24:25–34

    Article  Google Scholar 

  • del Río LA, Sevilla F, Sandalio LM, Palma JM (1991) Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radic Res Commun 12–13:819–827

    Google Scholar 

  • del Río LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P, López-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 24:434–438

    Article  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Google Scholar 

  • del Río LA, Sandalio LM, Altomare DA, Zilinskas BA (2003a) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003b) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demicheli V, Quijano C, Alvarez B, Radi R (2007) Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radic Biol Med 42:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Dietz K-J, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171:1535–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droillard MJ, Bureaux D, Paulin A, Daussant J (1989) Identification of different classes of superoxide dismutase in carnation petals. Electrophoresis 10:46–48

    Article  CAS  PubMed  Google Scholar 

  • Duke MV, Salin ML (1985) Purification and characterization of an iron-containing superoxide dismutase from a eukaryote, Ginkgo biloba. Arch Biochem Biophys 243:305–314

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi R, Sing VP, Kumar J, Prasad SM (2015) Differential physiological and biochemical responses of two Vigna species under enhanced UV-B radiation. J Radiat Res Appl Sci 8:173–181

    Article  CAS  Google Scholar 

  • Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie, Medizin. BI-Wissenschaftsverlag, Mannheim, Vienna, Zurich. ISBN 3-411-14001-1

    Google Scholar 

  • Elstner EF, Osswald W (1994) Mechanisms of oxygen activation during plant stress. Proc R Soc Edinburgh Biol 102B:131–154

    Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolás E, Barba-Espín G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernández JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Fernández VM, Sevilla F, López-Gorgé J, del Río LA (1982) Evidence for manganese(III) binding to the mangano superoxide dismutase from a higher plant. J Inorg Biochem 16:79–84

    Article  Google Scholar 

  • Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Carreras A, Valderrama R, Begara-Morales JC, Hernández LE, Corpas FJ, Barroso JB (2011) Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. J Plant Physiol 168:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Fortunato AS, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant, Cell Environ 39:951–964

    Article  CAS  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97

    CAS  PubMed  Google Scholar 

  • Fuerst EP, Vaughn KC (1990) Mechanisms of paraquat resistance. Weed Tech 4:150–156

    Article  Google Scholar 

  • García JE, Gómez M, Yáñez J, López-Gorgé J, del Río LA (1981) Isozyme pattern of the metalloenzyme system superoxide dismutase during growth of peas (Pisum sativum L.) under different iron nutrient concentrations. Zeitschrift für Pflanzenphysiol 105:21–29

    Article  Google Scholar 

  • Gómez JM, Hernández JA, Jiménez A, del Río LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31(Suppl.):S11–S18

    Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JI, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn-superoxide dismutase. Proc Natl Acad Sci U S A 90:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafsi C, Romero-Puertas MC, Gupta DK, del Río LA, Sandalio LM, Abdelly C (2010) Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environ Exp Bot 69:129–136

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press

    Google Scholar 

  • Hernández JA, Corpas FJ, Gómez M, del Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    Article  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  Google Scholar 

  • Hernández JA, Jiménez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell Environ 23:853–862

    Article  Google Scholar 

  • Hernández JA, Barba-Espín G, Clemente-Moreno MJ, Díaz-Vivancos P (2017) Plant responses to salinity through an antioxidative metabolism and proteomic point of view. In: Sarwat M, Ahmad A, Abdin M, Ibrahim M (eds) Stress signaling in plants: genomics and proteomics perspective, vol 2. Springer, Berlin, pp 173–200

    Google Scholar 

  • Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2015) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66:989–999

    Article  CAS  PubMed  Google Scholar 

  • Houmani H, Rodríguez-Ruiz M, Palma JM, Abdelly C, Corpas FJ (2016) Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima. Protoplasma 253:885–894

    Article  CAS  PubMed  Google Scholar 

  • Houmani H, Rodríguez-Ruiz M, Palma JM, Corpas FJ (2017) Mechanical wounding promotes local and long distance response in the halophyte Cakile maritima through the involvement of the ROS and RNS metabolism. Nitric Oxide. pii: S1089-8603(17)30086-1

    Google Scholar 

  • Imlay JA (2011) Redox pioneer: professor Irwin Fridovich. Antioxid Redox Signal 14:335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inzé A, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, van Breusegem F (2012) A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant, Cell Environ 35:308–320

    Article  CAS  Google Scholar 

  • Jansen MAK, Malan C, Shaaltiel Y, Gressel J (1990) Mode of evolved photooxidant resistance to herbicides and xenobiotics. Z Naturforsch C 45:463–469

    Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone. Plant, Cell Environ 17:783–794

    Article  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Kim HP, Hah YC, Roe JH (1996) Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Eur J Biochem 241:178–185

    Article  CAS  PubMed  Google Scholar 

  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZn-SOD, APX and NDPK2 genes. Physiol Plant 140:153–162

    Google Scholar 

  • Kim YH, Lim S, Han SH, Lee JJ, Nam KJ, Jeong JC, Lee HS, Kwak SS (2015) Expression of both CuZnSOD and APX in chloroplasts enhances tolerance to sulfur dioxide in transgenic sweet potato plants. C R Biol 338:307–313

    Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatowski J, Kaniuga Z (1984) Evidence for iron-containing superoxide dismutase in leaves of Lycopersicon esculentum and Phaseolus vulgaris. Acta Physiol Plant 6:197–202

    CAS  Google Scholar 

  • Leidi EO, Gómez M, del Río LA (1987) Evaluation of biochemical indicators of Fe and Mn nutrition for soybean plants. II. Superoxide dismutases, chlorophyll contents and photosystem II activity. J Plant Nutr 10:261–271

    Article  CAS  Google Scholar 

  • León AM, Palma JM, Corpas FJ, Gómez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Río LA, Sandalio LM (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820

    Article  Google Scholar 

  • Li L, Yi H (2012) Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Biochem 58:46–53

    Google Scholar 

  • Li Z, Han X, Song X, Zhang Y, Jiang Y, Han Q, Liu M, Qiao G, Zhou R (2017) Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis. Front Plant Sci 8:1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Madamanchi NR, Donahue JL, Cramer CL, Alscher RG, Pedersen K (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulphur dioxide. Plant Mol Biol 26:95–103

    Article  CAS  PubMed  Google Scholar 

  • Malan C, Greyling MM, Gressel J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69:157–166

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martínez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L (2014) Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. J Biol Chem 2289:12760–12778

    Article  CAS  Google Scholar 

  • Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14:9556–9580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matters GL, Scandalios JG (1986) Effect of free radical generating herbicide paraquat on the expression of the superoxide dismutase (Sod) genes in maize. Biochim Biophys Acta 882:29–38

    Article  CAS  PubMed  Google Scholar 

  • McCarthy I, Gómez M, del Río LA, Palma JM (2011) Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants. Biol Plant 55:485–492

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trend Plant Sci 22:11–19

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, van Breusegem F (2011) ROS signaling: the new wave? Trend Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell Environ 26:845–856

    Article  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 399:1105–1113

    Article  CAS  Google Scholar 

  • Morán JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  Google Scholar 

  • Nasir Khan M, Mobin M, Mohammad F, Corpas FJ (2014) Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, Berlin

    Google Scholar 

  • Naydenov NG, Khanam S, Siniauskaya M, Nakamura C (2010) Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses. Genes Genet Syst 85:31–42

    Article  CAS  PubMed  Google Scholar 

  • O’Kane D, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377

    Article  PubMed  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1996) Intra- and extra-cellular localization of ‘cytosolic’ CuZn superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol 37:790–799

    Article  CAS  Google Scholar 

  • Oidaira H, Sano S, Koshiba T, Ushimaru T (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. J Plant Physiol 156:811–813

    Article  CAS  Google Scholar 

  • Orozco-Cárdenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and system in via the octadecanoid pathway. Proc Natl Acad Sci U S A 96:6553–6557

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal AK, Acharya K, Vats SK, Kumar S, Ahuja PC (2013) Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. Biol Plant 57:359–364

    Article  CAS  Google Scholar 

  • Palma JM, Gómez M, Yáñez J, del Río LA (1987) Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Plant Physiol 85:570–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pitcher LH, Zilinskas BA (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV (1992) Cellular detoxifying mechanisms determine the age dependent injury in tropical trees exposed to SO2. J Plant Physiol 140:733–740

    Article  CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. J Exp Bot 58:2417–2427

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Gómez M, Sandalio LM, Corpas FJ, del Río LA, Palma JM (2004) Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant, Cell Environ 27:1135–1148

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, Gómez M, del Río LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:373

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, López-Huertas E, Bueno P, del Río LA (1997) Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res 26:187–194

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Ohyama T, Yamazaki I (1972) Preparation and physicochemical properties of green pea superoxide dismutase. Biochim Biophys Acta 268:305–312

    Article  CAS  PubMed  Google Scholar 

  • Schnell DM, St Clair D (2014) Redox pioneer: professor Joe M. McCord. Antioxid Redox Signal 20:183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scioli JR, Zilinskas BA (1988) Cloning and characterization of a cDNA encoding the chloroplastic copper/zinc-superoxide dismutase from pea. Proc Natl Acad Sci U S A 85:7661–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehrawat A, Abat JK, Deswal R (2013) RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea. Front Plant Sci 4:342

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevilla F, López-Gorgé J, Gómez M, del Río LA (1980) Manganese superoxide dismutase from a higher plant. Purification of a new Mn-containing enzyme. Planta 150:153–157

    Article  CAS  PubMed  Google Scholar 

  • Sevilla F, López-Gorgé J, del Río LA (1982) Characterization of a manganese superoxide dismutase from the higher plant Pisum sativum L. Plant Physiol 70:1321–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevilla F, del Río LA, Hellín E (1984) Superoxide dismutases from a Citrus plant: presence of two iron-containing isoenzymes in leaves of lemon trees (Citrus limonum R.). J Plant Physiol 116:381–387

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048–1059

    Article  CAS  PubMed  Google Scholar 

  • Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201–202:137–146

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  CAS  PubMed  Google Scholar 

  • Smith MW, Doolittle RF (1992) A comparison of evolutionary rates of the two major kinds of superoxide dismutases. J Mol Evol 34:175–184

    CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signalling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Szymańska R, Ślesak I, Orzechowska A, Kruk J (2017) Physiological and biochemical responses to high light and temperature stress in plants. Environ Exp Bot 139:165–177

    Article  CAS  Google Scholar 

  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in defense against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol 21:601–611

    Article  CAS  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    Article  CAS  PubMed  Google Scholar 

  • Tsang EWT, Bowler C, Herouart D, Van Camp W, Villaroel R, Genetello C, Van Montagu M, Inzé D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji K, Hosokawa M, Morita S, Miura R, Tominaga T (2013) Resistance to paraquat in Mazus pumilus. Weed Res 53:176–182

    Article  CAS  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    Article  CAS  PubMed  Google Scholar 

  • Vainonen JP, Kangasjärvi J (2015) Plant signalling in acute ozone exposure. Plant, Cell Environ 38:240–252

    Article  CAS  Google Scholar 

  • Van Camp W, Bowler C, Villaroel R, Tsang EW, Van Montagu M, Inzé D (1990) Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci U S A 87:9903–9907

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderauwera S, Hoeberichts FA, Van Breusegem F (2009) Hydrogen peroxide-responsive genes in stress acclimation and cell death. In: del Río LA, Puppo A (eds) Reactive oxygen species in plant signaling. Springer, Berlin, pp 149–164

    Google Scholar 

  • Vaughan D, Dekock PC, Ord BG (1982) The nature and localization of superoxide dismutase in fronds of Lemna gibba L. and the effect of copper and zinc deficiency on its activity. Physiol Plant 54:253–257

    Article  CAS  Google Scholar 

  • Walker CD, Loneragan JF (1981) Effects of copper deficiency on copper and nitrogen concentrations and enzyme activities in aerial parts of vegetative subterranean clover plants. Ann Bot 47:65–73

    Article  Google Scholar 

  • Wang X, Cai J, Liu F, Dai T, Cao W, Wollenweber B, Jiang D (2014) Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol Biochem 74:185–192

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xia MX, Chen J, Yuan R, Deng FN, Shen FF (2016) Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochemistry (Moscow) 81:465–480

    Article  CAS  Google Scholar 

  • Wang SS, Zhang YX, Yang F, Huang ZQ, Tang J, Hu KD, Zhang H (2017) Sulfur dioxide alleviates programmed cell death in barley aleurone by acting as an antioxidant. PLoS One 12(11):e0188289

    Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Wong-Vega L, Burke JJ, Allen RD (1991) Isolation and sequence analysis of a cDNA that encodes pea manganese superoxide dismutase. Plant Mol Biol 17:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318(Pt. 3):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many colleagues whose work could not be discussed due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. del Río .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Río, L.A., Corpas, F.J., López-Huertas, E., Palma, J.M. (2018). Plant Superoxide Dismutases: Function Under Abiotic Stress Conditions. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_1

Download citation

Publish with us

Policies and ethics