Skip to main content

Bridging Archaeology and Genetics

  • Chapter
  • First Online:
Environmental Archaeology

Abstract

With the development of the polymerase chain reaction (PCR) in the 1980s, the application of molecular methods to archaeological questions has seen a rapid expansion in the last three decades, addressing major research topics including human origins and migrations, domestication and chronology. The recent introduction of next-generation sequencing (NGS) has revolutionised the field, allowing for a larger amount of data to be generated quickly and at ever-decreasing costs. With such techniques now available, it is crucial for a clear and comprehensive dialogue to be established between archaeologists and geneticists. In the following paper, we first review the history of archaeogenetics before addressing some of the major misconceptions that remain commonly widespread across audiences. These include the misconception that genetics can reconstruct full phenotypes or that modern populations can be solely used to retrace a species’ origin or domestication. After exploring the current potential of genetics applied to archaeology through successful case studies, we highlight practical considerations when undertaking archaeogenetic research including sample status and selecting adequate genetic markers and methods. Finally, we suggest ways of bridging the gap between both disciplines so as to allow better collaborations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, S., Bankier, A. T., Barrell, B. G., Debruijn, M. H. L., Coulson, A. R., Drouin, J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465. https://doi.org/10.1038/290457a0

    Article  Google Scholar 

  • Angleby, H., & Savolainen, P. (2005). Forensic informativity of domestic dog mtDNA control region sequences. Forensic Science International, 154(2-3), 99–110. https://doi.org/10.1016/J.Forsciint.2004.09.132

    Article  Google Scholar 

  • Aulchenko, Y. S., Struchalin, M. V., Belonogova, N. M., Axenovich, T. I., Weedon, M. N., Hofman, A., et al. (2009). Predicting human height by Victorian and post-genomic methods. Annals of Human Genetics, 73, 661–661.

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., et al. (1987). Intraspecific phylogeography – the mitochondrial-DNA bridge between population-genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522. https://doi.org/10.1146/Annurev.Ecolsys.18.1.489

    Article  Google Scholar 

  • Bos, K. I., Harkins, K. M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al. (2014). Pre-Columbian mycobacterial genomes reveal seals as a source of new world human tuberculosis. Nature, 514(7523), 494–497. https://doi.org/10.1038/nature13591

    Article  Google Scholar 

  • Boyko, A. R., Boyko, R. H., Boyko, C. M., Parker, H. G., Castelhano, M., Corey, L., et al. (2009). Complex population structure in African village dogs and its implications for inferring dog domestication history. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 13903–13908., doi:0902129106 [pii]. https://doi.org/10.1073/pnas.0902129106

    Article  Google Scholar 

  • Bradley, D. G. (2006). Documenting domestication reading animal genetic texts. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: New genetic and archaeological paradigms (pp. 273–278). London: University of California Press.

    Google Scholar 

  • Bromham, L. (2008). Reading the story in DNA: A beginner’s guide to molecular evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Brown, S. K., Pedersen, N. C., Jafarishorijeh, S., Bannasch, D., Ahrens, K. D., Wu, J. T., et al. (2011). Phylogenetic distinctiveness of middle eastern and southeast Asian village dog Y chromosome illuminates dog origins. PLoS One, 6(12), e28496.

    Article  Google Scholar 

  • Brown, S., Higham, T., Slon, V., Paabo, S., Meyer, M., Douka, K., et al. (2016). Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Scientific Reports, 6, Artn 23559. https://doi.org/10.1038/Srep23559

    Article  Google Scholar 

  • Bruford, M. W., Bradley, D. G., & Luikart, G. (2003). DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 4(11), 900–910. https://doi.org/10.1038/nrg1203

    Article  Google Scholar 

  • Buckley, M., Collins, M., Thomas-Oates, J., & Wilson, J. C. (2009). Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 23(23), 3843–3854. https://doi.org/10.1002/rcm.4316

    Article  Google Scholar 

  • Buckley, M., Kansa, S. W., Howard, S., Campbell, S., Thomas-Oates, J., & Collins, M. (2010). Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science, 37(1), 13–20. https://doi.org/10.1016/j.jas.2009.08.020

    Article  Google Scholar 

  • Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A., & Poinar, G. O., Jr. (1993). Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature, 363(6429), 536–538. https://doi.org/10.1038/363536a0

    Article  Google Scholar 

  • Cooper, A., & Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 289(5482), 1139.

    Article  Google Scholar 

  • Crichton, M. (1990). Jurassic Park. New York: Alfred A. Knopf.

    Google Scholar 

  • DeSalle, R., Gatesy, J., Wheeler, W., & Grimaldi, D. (1992). DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 257(5078), 1933–1936.

    Article  Google Scholar 

  • Desjardins, P., & Morais, R. j. (1990). Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher vertebrates. Journal of Molecular Biology, 212(4), 599–634. https://doi.org/10.1016/0022-2836(90)90225-B

    Article  Google Scholar 

  • Eriksson, J., Larson, G., Gunnarsson, U., Bed’hom, B., Tixier-Boichard, M., Stromstedt, L., et al. (2008). Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics, 4(2), e1000010. https://doi.org/10.1371/journal.pgen.1000010

    Article  Google Scholar 

  • Flink, L. G., Allen, R., Barnett, R., Malmstrom, H., Peters, J., Eriksson, J., et al. (2014). Establishing the validity of domestication genes using DNA from ancient chickens. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6184–6189. https://doi.org/10.1073/Pnas.1308939110

    Article  Google Scholar 

  • Frantz, L. A., Mullin, V. E., Pionnier-Capitan, M., Lebrasseur, O., Ollivier, M., Perri, A., et al. (2016). Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science, 352(6290), 1228–1231. https://doi.org/10.1126/science.aaf3161

    Article  Google Scholar 

  • Galtier, N., Nabholz, B., Glemin, S., & Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Molecular Ecology, 18(22), 4541–4550. https://doi.org/10.1111/J.1365-294x.2009.04380.X

    Article  Google Scholar 

  • Gibbons, A. (1994). Possible dino DNA find is greeted with skepticism. Science, 266(5188), 1159.

    Article  Google Scholar 

  • Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., et al. (1990). Chloroplast DNA sequence from a miocene Magnolia species. Nature, 344(6267), 656–658. https://doi.org/10.1038/344656a0

    Article  Google Scholar 

  • Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710–722. https://doi.org/10.1126/science.1188021

    Article  Google Scholar 

  • Handt, O., Hoss, M., Krings, M., & Paabo, S. (1994). Ancient DNA: Methodological challenges. Experientia, 50(6), 524–529.

    Article  Google Scholar 

  • Hershberg, R., Lipatov, M., Small, P. M., Sheffer, H., Niemann, S., Homolka, S., et al. (2008). High functional diversity in mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biology, 6(12), 2658–2671. https://doi.org/10.1371/journal.pbio.0060311.

    Article  Google Scholar 

  • Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A., & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312(5991), 282–284.

    Article  Google Scholar 

  • Ho, S. Y., & Gilbert, M. T. (2010). Ancient mitogenomics. Mitochondrion, 10(1), 1–11. https://doi.org/10.1016/j.mito.2009.09.005

    Article  Google Scholar 

  • Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M., & Paabo, S. (2001). Ancient DNA. Nature Reviews Genetics, 2(5), 353–359. https://doi.org/10.1038/35072071

    Article  Google Scholar 

  • Hofreiter, M., Paijmans, J. L., Goodchild, H., Speller, C. F., Barlow, A., Fortes, G. G., et al. (2015). The future of ancient DNA: Technical advances and conceptual shifts. BioEssays, 37(3), 284–293. https://doi.org/10.1002/bies.201400160

    Article  Google Scholar 

  • Huerta-Sanchez, E., Jin, X., Asan, Bianba, Z., Peter, B. M., Vinckenbosch, N., et al. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512(7513), 194−+. https://doi.org/10.1038/nature13408

    Article  Google Scholar 

  • Ingman, M., Kaessmann, H., Paabo, S., & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408(6813), 708–713. https://doi.org/10.1038/35047064

    Article  Google Scholar 

  • Kim, K. S., Lee, S. E., Jeong, H. W., & Ha, J. H. (1998). The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Molecular Phylogenetics and Evolution, 10(2), 210–220.

    Article  Google Scholar 

  • Krause, J., Dear, P. H., Pollack, J. L., Slatkin, M., Spriggs, H., Barnes, I., et al. (2006). Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 439(7077), 724–727. https://doi.org/10.1038/nature04432

    Article  Google Scholar 

  • Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., et al. (2007). The derived FOXP2 variant of modern humans was shared with neandertals. Current Biology, 17(21), 1908–1912. https://doi.org/10.1016/j.cub.2007.10.008

    Article  Google Scholar 

  • Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Paabo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90(1), 19–30.

    Article  Google Scholar 

  • Larson, G. (2011). Genetics and domestication important questions for new answers. Current Anthropology, 52, S485–S495. https://doi.org/10.1086/658401

    Article  Google Scholar 

  • Larson, G., Karlsson, E. K., Perri, A., Webster, M. T., Ho, S. Y., Peters, J., et al. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8878–8883., doi:1203005109 [pii]. https://doi.org/10.1073/pnas.1203005109

    Article  Google Scholar 

  • Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., et al. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513(7518), 409–413. https://doi.org/10.1038/nature13673

    Article  Google Scholar 

  • Lebrasseur, O. (2010). On the origins of goats, pigs, cattle and Java deer from Mauritius: An ancient DNA investigation. Unpublished Masters Thesis. University of Durham. http://www.espcr.org/micemut/

  • Leonard, J. A. (2008). Ancient DNA applications for wildlife conservation. Molecular Ecology, 17(19), 4186–4196. https://doi.org/10.1111/j.1365-294X.2008.03891.x

    Article  Google Scholar 

  • Leonard, J. A., Wayne, R. K., & Cooper, A. (2000). Population genetics of Ice age brown bears. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1651–1654. https://doi.org/10.1073/Pnas.040453097

    Article  Google Scholar 

  • Li, L. F., Wang, H. Y., Zhang, C., Wang, X. F., Shi, F. X., Chen, W. N., et al. (2013). Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One, 8(11), ARTN e80502. https://doi.org/10.1371/journal.pone.0080502

    Article  Google Scholar 

  • Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M., & Cunningham, P. (1994). Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences of the United States of America, 91(7), 2757–2761.

    Article  Google Scholar 

  • Metzker, M. L. (2010). Sequencing technologies – The next generation. Nature Reviews Genetics, 11(1), 31–46. https://doi.org/10.1038/nrg2626

    Article  Google Scholar 

  • Montoliu, L., Oetting, W. S., & Bennett, D. C. (2010). Color genes. European Society for Pigment Cell Research. http://www.espcr.org/micemut/

  • Morell, V. (1993). Dino DNA: The hunt and the hype. Science, 261(5118), 160–162.

    Article  Google Scholar 

  • Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350.

    Article  Google Scholar 

  • Murray, D. C., Haile, J., Dortch, J., White, N. E., Haouchar, D., Bellgard, M. I., et al. (2013). Scrapheap challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Scientific Reports, 3, 3371. https://doi.org/10.1038/srep03371

    Article  Google Scholar 

  • Paabo, S. (1985). Molecular cloning of ancient Egyptian mummy DNA. Nature, 314(6012), 644–645.

    Article  Google Scholar 

  • Paabo, S., & Wilson, A. C. (1991). Miocene DNA sequences – A dream come true? Current Biology, 1(1), 45–46.

    Article  Google Scholar 

  • Paabo, S., Gifford, J. A., & Wilson, A. C. (1988). Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Research, 16(20), 9775–9787.

    Article  Google Scholar 

  • Pang, J. F., Kluetsch, C., Zou, X. J., Zhang, A. B., Luo, L. Y., Angleby, H., et al. (2009). mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Molecular Biology and Evolution, 26(12), 2849–2864., doi:msp195 [pii]. https://doi.org/10.1093/molbev/msp195

    Article  Google Scholar 

  • Pickrell, J. K., & Reich, D. (2014). Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics, 30(9), 377–389. https://doi.org/10.1016/J.Tig.2014.07.007

    Article  Google Scholar 

  • Pitra, C., Fickel, J., Meijaard, E., & Groves, P. C. (2004). Evolution and phylogeny of old world deer. Molecular Phylogenetics and Evolution, 33(3), 880–895., doi:S1055-7903(04)00237-4 [pii]. https://doi.org/10.1016/j.ympev.2004.07.013

    Article  Google Scholar 

  • Pruvost, M., Bellone, R., Benecke, N., Sandoval-Castellanos, E., Cieslak, M., Kuznetsova, T., et al. (2011). Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18626–18630. https://doi.org/10.1073/pnas.1108982108

    Article  Google Scholar 

  • Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., et al. (2012). A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341. https://doi.org/10.1186/1471-2164-13-341

    Article  Google Scholar 

  • Richards, M. B., Sykes, B. C., & Hedges, R. E. M. (1995). Authenticating DNA extracted from ancient skeletal remains. Journal of Archaeological Science, 22(2), 291–299. https://doi.org/10.1006/Jasc.1995.0031

    Article  Google Scholar 

  • Richter, K. K., Wilson, J., Jones, A. K. G., Buckley, M., van Doorn, N., & Collins, M. J. (2011). Fish ‘n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments. Journal of Archaeological Science, 38(7), 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014

    Article  Google Scholar 

  • Ritvo, H. (1986). Pride and pedigree: The evolution of the Victorian dog fancy. Victorian Studies, 29(2), 227–253.

    Google Scholar 

  • Roberts, C. A., & Buikstra, J. E. (2003). The bioarchaeology of tuberculosis : A global view on a reemerging disease. Gainesville: University Press of Florida.

    Google Scholar 

  • Sacks, B. N., Brown, S. K., Stephens, D., Pedersen, N. C., Wu, J. T., & Berry, O. (2013). Y chromosome analysis of dingoes and southeast asian village dogs suggests a neolithic continental expansion from Southeast Asia followed by multiple Austronesian dispersals. Molecular Biology and Evolution, 30(5), 1103–1118. https://doi.org/10.1093/molbev/mst027

    Article  Google Scholar 

  • Sanchez-Puerta, M. V., & Abbona, C. C. (2014). The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae). PLoS One, 9(5), e98353. https://doi.org/10.1371/journal.pone.0098353

    Article  Google Scholar 

  • Savolainen, P. (1999). Mitochondrial DNA: Analysis of the control region in forensic and population genetic studies. Stockholm: Tekniska högsk.

    Google Scholar 

  • Savolainen, P., Zhang, Y. P., Luo, J., Lundeberg, J., & Leitner, T. (2002). Genetic evidence for an East Asian origin of domestic dogs. Science, 298(5598), 1610–1613.

    Article  Google Scholar 

  • Storey, A. A., Miguel, R. J., Quiroz, D., Burley, D. V., Addison, D. J., Walter, R., et al. (2007). Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. PNAS, 104(25), 10335–10339.

    Article  Google Scholar 

  • Thalmann, O., Shapiro, B., Cui, P., Schuenemann, V. J., Sawyer, S. K., Greenfield, D. L., et al. (2013). Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science, 342(6160), 871–874. https://doi.org/10.1126/science.1243650

    Article  Google Scholar 

  • Thomson, V. A., Lebrasseur, O., Austin, J. J., Hunt, T. L., Burney, D. A., Denham, T., et al. (2014). Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4826–4831. https://doi.org/10.1073/pnas.1320412111

    Article  Google Scholar 

  • van Geel, B., Fisher, D. C., Rountrey, A. N., van Arkel, J., Duivenvoorden, J. F., Nieman, A. M., et al. (2011). Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quaternary Science Reviews, 30(27-28), 3935–3946. https://doi.org/10.1016/j.quascirev.2011.10.009

    Article  Google Scholar 

  • Vila, C., Savolainen, P., Maldonado, J. E., Amorim, I. R., Rice, J. E., Honeycutt, R. L., et al. (1997). Multiple and ancient origins of the domestic dog. Science, 276(5319), 1687–1689.

    Article  Google Scholar 

  • Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 4356, 737–738.

    Article  Google Scholar 

  • White, T. D., & Folkens, P. A. (2005). The human bone manual. Burlington/London: Elsevier.

    Google Scholar 

  • Woodward, S. R., Weyand, N. J., & Bunnell, M. (1994). DNA sequence from Cretaceous period bone fragments. Science, 266(5188), 1229–1232.

    Article  Google Scholar 

  • Yang, D. Y., Liu, L., Chen, X. C., & Speller, C. F. (2008). Wild or domesticated: DNA analysis of ancient water buffalo remains from north China. Journal of Archaeological Science, 35(10), 2778–2785. https://doi.org/10.1016/j.jas.2008.05.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Davina Craps, James Haile, Rachel Hopkins, Greger Larson and Anna Linderholm for their helpful comments and Evangelia Pişkin and Marta Bartkowiak for having provided us with the opportunity to present and publish this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ophélie Lebrasseur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebrasseur, O., Ryan, H., Abbona, C. (2018). Bridging Archaeology and Genetics. In: Pişkin, E., Marciniak, A., Bartkowiak, M. (eds) Environmental Archaeology. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-75082-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75082-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75081-1

  • Online ISBN: 978-3-319-75082-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics