Bridging Archaeology and Genetics

Chapter
Part of the Interdisciplinary Contributions to Archaeology book series (IDCA)

Abstract

With the development of the polymerase chain reaction (PCR) in the 1980s, the application of molecular methods to archaeological questions has seen a rapid expansion in the last three decades, addressing major research topics including human origins and migrations, domestication and chronology. The recent introduction of next-generation sequencing (NGS) has revolutionised the field, allowing for a larger amount of data to be generated quickly and at ever-decreasing costs. With such techniques now available, it is crucial for a clear and comprehensive dialogue to be established between archaeologists and geneticists. In the following paper, we first review the history of archaeogenetics before addressing some of the major misconceptions that remain commonly widespread across audiences. These include the misconception that genetics can reconstruct full phenotypes or that modern populations can be solely used to retrace a species’ origin or domestication. After exploring the current potential of genetics applied to archaeology through successful case studies, we highlight practical considerations when undertaking archaeogenetic research including sample status and selecting adequate genetic markers and methods. Finally, we suggest ways of bridging the gap between both disciplines so as to allow better collaborations in the future.

Keywords

Ancient DNA Modern DNA Archaeology mtDNA NGS Museum sampling 

Notes

Acknowledgements

The authors would like to thank Davina Craps, James Haile, Rachel Hopkins, Greger Larson and Anna Linderholm for their helpful comments and Evangelia Pişkin and Marta Bartkowiak for having provided us with the opportunity to present and publish this review.

References

  1. Anderson, S., Bankier, A. T., Barrell, B. G., Debruijn, M. H. L., Coulson, A. R., Drouin, J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465.  https://doi.org/10.1038/290457a0 CrossRefGoogle Scholar
  2. Angleby, H., & Savolainen, P. (2005). Forensic informativity of domestic dog mtDNA control region sequences. Forensic Science International, 154(2-3), 99–110.  https://doi.org/10.1016/J.Forsciint.2004.09.132 CrossRefGoogle Scholar
  3. Aulchenko, Y. S., Struchalin, M. V., Belonogova, N. M., Axenovich, T. I., Weedon, M. N., Hofman, A., et al. (2009). Predicting human height by Victorian and post-genomic methods. Annals of Human Genetics, 73, 661–661.Google Scholar
  4. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., et al. (1987). Intraspecific phylogeography – the mitochondrial-DNA bridge between population-genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.  https://doi.org/10.1146/Annurev.Ecolsys.18.1.489 CrossRefGoogle Scholar
  5. Bos, K. I., Harkins, K. M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al. (2014). Pre-Columbian mycobacterial genomes reveal seals as a source of new world human tuberculosis. Nature, 514(7523), 494–497.  https://doi.org/10.1038/nature13591 CrossRefGoogle Scholar
  6. Boyko, A. R., Boyko, R. H., Boyko, C. M., Parker, H. G., Castelhano, M., Corey, L., et al. (2009). Complex population structure in African village dogs and its implications for inferring dog domestication history. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 13903–13908., doi:0902129106 [pii].  https://doi.org/10.1073/pnas.0902129106 CrossRefGoogle Scholar
  7. Bradley, D. G. (2006). Documenting domestication reading animal genetic texts. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: New genetic and archaeological paradigms (pp. 273–278). London: University of California Press.Google Scholar
  8. Bromham, L. (2008). Reading the story in DNA: A beginner’s guide to molecular evolution. Oxford: Oxford University Press.Google Scholar
  9. Brown, S. K., Pedersen, N. C., Jafarishorijeh, S., Bannasch, D., Ahrens, K. D., Wu, J. T., et al. (2011). Phylogenetic distinctiveness of middle eastern and southeast Asian village dog Y chromosome illuminates dog origins. PLoS One, 6(12), e28496.CrossRefGoogle Scholar
  10. Brown, S., Higham, T., Slon, V., Paabo, S., Meyer, M., Douka, K., et al. (2016). Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Scientific Reports, 6, Artn 23559.  https://doi.org/10.1038/Srep23559 CrossRefGoogle Scholar
  11. Bruford, M. W., Bradley, D. G., & Luikart, G. (2003). DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 4(11), 900–910.  https://doi.org/10.1038/nrg1203 CrossRefGoogle Scholar
  12. Buckley, M., Collins, M., Thomas-Oates, J., & Wilson, J. C. (2009). Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 23(23), 3843–3854.  https://doi.org/10.1002/rcm.4316 CrossRefGoogle Scholar
  13. Buckley, M., Kansa, S. W., Howard, S., Campbell, S., Thomas-Oates, J., & Collins, M. (2010). Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science, 37(1), 13–20.  https://doi.org/10.1016/j.jas.2009.08.020 CrossRefGoogle Scholar
  14. Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A., & Poinar, G. O., Jr. (1993). Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature, 363(6429), 536–538.  https://doi.org/10.1038/363536a0 CrossRefGoogle Scholar
  15. Cooper, A., & Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 289(5482), 1139.CrossRefGoogle Scholar
  16. Crichton, M. (1990). Jurassic Park. New York: Alfred A. Knopf.Google Scholar
  17. DeSalle, R., Gatesy, J., Wheeler, W., & Grimaldi, D. (1992). DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 257(5078), 1933–1936.CrossRefGoogle Scholar
  18. Desjardins, P., & Morais, R. j. (1990). Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher vertebrates. Journal of Molecular Biology, 212(4), 599–634.  https://doi.org/10.1016/0022-2836(90)90225-B CrossRefGoogle Scholar
  19. Eriksson, J., Larson, G., Gunnarsson, U., Bed’hom, B., Tixier-Boichard, M., Stromstedt, L., et al. (2008). Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics, 4(2), e1000010.  https://doi.org/10.1371/journal.pgen.1000010 CrossRefGoogle Scholar
  20. Flink, L. G., Allen, R., Barnett, R., Malmstrom, H., Peters, J., Eriksson, J., et al. (2014). Establishing the validity of domestication genes using DNA from ancient chickens. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6184–6189.  https://doi.org/10.1073/Pnas.1308939110 CrossRefGoogle Scholar
  21. Frantz, L. A., Mullin, V. E., Pionnier-Capitan, M., Lebrasseur, O., Ollivier, M., Perri, A., et al. (2016). Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science, 352(6290), 1228–1231.  https://doi.org/10.1126/science.aaf3161 CrossRefGoogle Scholar
  22. Galtier, N., Nabholz, B., Glemin, S., & Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Molecular Ecology, 18(22), 4541–4550.  https://doi.org/10.1111/J.1365-294x.2009.04380.X CrossRefGoogle Scholar
  23. Gibbons, A. (1994). Possible dino DNA find is greeted with skepticism. Science, 266(5188), 1159.CrossRefGoogle Scholar
  24. Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., et al. (1990). Chloroplast DNA sequence from a miocene Magnolia species. Nature, 344(6267), 656–658.  https://doi.org/10.1038/344656a0 CrossRefGoogle Scholar
  25. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710–722.  https://doi.org/10.1126/science.1188021 CrossRefGoogle Scholar
  26. Handt, O., Hoss, M., Krings, M., & Paabo, S. (1994). Ancient DNA: Methodological challenges. Experientia, 50(6), 524–529.CrossRefGoogle Scholar
  27. Hershberg, R., Lipatov, M., Small, P. M., Sheffer, H., Niemann, S., Homolka, S., et al. (2008). High functional diversity in mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biology, 6(12), 2658–2671.  https://doi.org/10.1371/journal.pbio.0060311. CrossRefGoogle Scholar
  28. Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A., & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312(5991), 282–284.CrossRefGoogle Scholar
  29. Ho, S. Y., & Gilbert, M. T. (2010). Ancient mitogenomics. Mitochondrion, 10(1), 1–11.  https://doi.org/10.1016/j.mito.2009.09.005 CrossRefGoogle Scholar
  30. Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M., & Paabo, S. (2001). Ancient DNA. Nature Reviews Genetics, 2(5), 353–359.  https://doi.org/10.1038/35072071 CrossRefGoogle Scholar
  31. Hofreiter, M., Paijmans, J. L., Goodchild, H., Speller, C. F., Barlow, A., Fortes, G. G., et al. (2015). The future of ancient DNA: Technical advances and conceptual shifts. BioEssays, 37(3), 284–293.  https://doi.org/10.1002/bies.201400160 CrossRefGoogle Scholar
  32. Huerta-Sanchez, E., Jin, X., Asan, Bianba, Z., Peter, B. M., Vinckenbosch, N., et al. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512(7513), 194−+.  https://doi.org/10.1038/nature13408 CrossRefGoogle Scholar
  33. Ingman, M., Kaessmann, H., Paabo, S., & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408(6813), 708–713.  https://doi.org/10.1038/35047064 CrossRefGoogle Scholar
  34. Kim, K. S., Lee, S. E., Jeong, H. W., & Ha, J. H. (1998). The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Molecular Phylogenetics and Evolution, 10(2), 210–220.CrossRefGoogle Scholar
  35. Krause, J., Dear, P. H., Pollack, J. L., Slatkin, M., Spriggs, H., Barnes, I., et al. (2006). Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 439(7077), 724–727.  https://doi.org/10.1038/nature04432 CrossRefGoogle Scholar
  36. Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., et al. (2007). The derived FOXP2 variant of modern humans was shared with neandertals. Current Biology, 17(21), 1908–1912.  https://doi.org/10.1016/j.cub.2007.10.008 CrossRefGoogle Scholar
  37. Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Paabo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90(1), 19–30.CrossRefGoogle Scholar
  38. Larson, G. (2011). Genetics and domestication important questions for new answers. Current Anthropology, 52, S485–S495.  https://doi.org/10.1086/658401 CrossRefGoogle Scholar
  39. Larson, G., Karlsson, E. K., Perri, A., Webster, M. T., Ho, S. Y., Peters, J., et al. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8878–8883., doi:1203005109 [pii].  https://doi.org/10.1073/pnas.1203005109 CrossRefGoogle Scholar
  40. Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., et al. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513(7518), 409–413.  https://doi.org/10.1038/nature13673 CrossRefGoogle Scholar
  41. Lebrasseur, O. (2010). On the origins of goats, pigs, cattle and Java deer from Mauritius: An ancient DNA investigation. Unpublished Masters Thesis. University of Durham. http://www.espcr.org/micemut/
  42. Leonard, J. A. (2008). Ancient DNA applications for wildlife conservation. Molecular Ecology, 17(19), 4186–4196.  https://doi.org/10.1111/j.1365-294X.2008.03891.x CrossRefGoogle Scholar
  43. Leonard, J. A., Wayne, R. K., & Cooper, A. (2000). Population genetics of Ice age brown bears. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1651–1654.  https://doi.org/10.1073/Pnas.040453097 CrossRefGoogle Scholar
  44. Li, L. F., Wang, H. Y., Zhang, C., Wang, X. F., Shi, F. X., Chen, W. N., et al. (2013). Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One, 8(11), ARTN e80502.  https://doi.org/10.1371/journal.pone.0080502 CrossRefGoogle Scholar
  45. Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M., & Cunningham, P. (1994). Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences of the United States of America, 91(7), 2757–2761.CrossRefGoogle Scholar
  46. Metzker, M. L. (2010). Sequencing technologies – The next generation. Nature Reviews Genetics, 11(1), 31–46.  https://doi.org/10.1038/nrg2626 CrossRefGoogle Scholar
  47. Montoliu, L., Oetting, W. S., & Bennett, D. C. (2010). Color genes. European Society for Pigment Cell Research. http://www.espcr.org/micemut/
  48. Morell, V. (1993). Dino DNA: The hunt and the hype. Science, 261(5118), 160–162.CrossRefGoogle Scholar
  49. Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350.CrossRefGoogle Scholar
  50. Murray, D. C., Haile, J., Dortch, J., White, N. E., Haouchar, D., Bellgard, M. I., et al. (2013). Scrapheap challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Scientific Reports, 3, 3371.  https://doi.org/10.1038/srep03371 CrossRefGoogle Scholar
  51. Paabo, S. (1985). Molecular cloning of ancient Egyptian mummy DNA. Nature, 314(6012), 644–645.CrossRefGoogle Scholar
  52. Paabo, S., & Wilson, A. C. (1991). Miocene DNA sequences – A dream come true? Current Biology, 1(1), 45–46.CrossRefGoogle Scholar
  53. Paabo, S., Gifford, J. A., & Wilson, A. C. (1988). Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Research, 16(20), 9775–9787.CrossRefGoogle Scholar
  54. Pang, J. F., Kluetsch, C., Zou, X. J., Zhang, A. B., Luo, L. Y., Angleby, H., et al. (2009). mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Molecular Biology and Evolution, 26(12), 2849–2864., doi:msp195 [pii].  https://doi.org/10.1093/molbev/msp195 CrossRefGoogle Scholar
  55. Pickrell, J. K., & Reich, D. (2014). Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics, 30(9), 377–389.  https://doi.org/10.1016/J.Tig.2014.07.007 CrossRefGoogle Scholar
  56. Pitra, C., Fickel, J., Meijaard, E., & Groves, P. C. (2004). Evolution and phylogeny of old world deer. Molecular Phylogenetics and Evolution, 33(3), 880–895., doi:S1055-7903(04)00237-4 [pii].  https://doi.org/10.1016/j.ympev.2004.07.013 CrossRefGoogle Scholar
  57. Pruvost, M., Bellone, R., Benecke, N., Sandoval-Castellanos, E., Cieslak, M., Kuznetsova, T., et al. (2011). Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18626–18630.  https://doi.org/10.1073/pnas.1108982108 CrossRefGoogle Scholar
  58. Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., et al. (2012). A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341.  https://doi.org/10.1186/1471-2164-13-341 CrossRefGoogle Scholar
  59. Richards, M. B., Sykes, B. C., & Hedges, R. E. M. (1995). Authenticating DNA extracted from ancient skeletal remains. Journal of Archaeological Science, 22(2), 291–299.  https://doi.org/10.1006/Jasc.1995.0031 CrossRefGoogle Scholar
  60. Richter, K. K., Wilson, J., Jones, A. K. G., Buckley, M., van Doorn, N., & Collins, M. J. (2011). Fish ‘n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments. Journal of Archaeological Science, 38(7), 1502–1510.  https://doi.org/10.1016/j.jas.2011.02.014 CrossRefGoogle Scholar
  61. Ritvo, H. (1986). Pride and pedigree: The evolution of the Victorian dog fancy. Victorian Studies, 29(2), 227–253.Google Scholar
  62. Roberts, C. A., & Buikstra, J. E. (2003). The bioarchaeology of tuberculosis : A global view on a reemerging disease. Gainesville: University Press of Florida.Google Scholar
  63. Sacks, B. N., Brown, S. K., Stephens, D., Pedersen, N. C., Wu, J. T., & Berry, O. (2013). Y chromosome analysis of dingoes and southeast asian village dogs suggests a neolithic continental expansion from Southeast Asia followed by multiple Austronesian dispersals. Molecular Biology and Evolution, 30(5), 1103–1118.  https://doi.org/10.1093/molbev/mst027 CrossRefGoogle Scholar
  64. Sanchez-Puerta, M. V., & Abbona, C. C. (2014). The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae). PLoS One, 9(5), e98353.  https://doi.org/10.1371/journal.pone.0098353 CrossRefGoogle Scholar
  65. Savolainen, P. (1999). Mitochondrial DNA: Analysis of the control region in forensic and population genetic studies. Stockholm: Tekniska högsk.Google Scholar
  66. Savolainen, P., Zhang, Y. P., Luo, J., Lundeberg, J., & Leitner, T. (2002). Genetic evidence for an East Asian origin of domestic dogs. Science, 298(5598), 1610–1613.CrossRefGoogle Scholar
  67. Storey, A. A., Miguel, R. J., Quiroz, D., Burley, D. V., Addison, D. J., Walter, R., et al. (2007). Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. PNAS, 104(25), 10335–10339.CrossRefGoogle Scholar
  68. Thalmann, O., Shapiro, B., Cui, P., Schuenemann, V. J., Sawyer, S. K., Greenfield, D. L., et al. (2013). Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science, 342(6160), 871–874.  https://doi.org/10.1126/science.1243650 CrossRefGoogle Scholar
  69. Thomson, V. A., Lebrasseur, O., Austin, J. J., Hunt, T. L., Burney, D. A., Denham, T., et al. (2014). Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4826–4831.  https://doi.org/10.1073/pnas.1320412111 CrossRefGoogle Scholar
  70. van Geel, B., Fisher, D. C., Rountrey, A. N., van Arkel, J., Duivenvoorden, J. F., Nieman, A. M., et al. (2011). Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quaternary Science Reviews, 30(27-28), 3935–3946.  https://doi.org/10.1016/j.quascirev.2011.10.009 CrossRefGoogle Scholar
  71. Vila, C., Savolainen, P., Maldonado, J. E., Amorim, I. R., Rice, J. E., Honeycutt, R. L., et al. (1997). Multiple and ancient origins of the domestic dog. Science, 276(5319), 1687–1689.CrossRefGoogle Scholar
  72. Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 4356, 737–738.CrossRefGoogle Scholar
  73. White, T. D., & Folkens, P. A. (2005). The human bone manual. Burlington/London: Elsevier.Google Scholar
  74. Woodward, S. R., Weyand, N. J., & Bunnell, M. (1994). DNA sequence from Cretaceous period bone fragments. Science, 266(5188), 1229–1232.CrossRefGoogle Scholar
  75. Yang, D. Y., Liu, L., Chen, X. C., & Speller, C. F. (2008). Wild or domesticated: DNA analysis of ancient water buffalo remains from north China. Journal of Archaeological Science, 35(10), 2778–2785.  https://doi.org/10.1016/j.jas.2008.05.010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ophélie Lebrasseur
    • 1
  • Hannah Ryan
    • 1
  • Cinthia Abbona
    • 2
  1. 1.Palaeogenomics & Bio-Archaeology Research Network, School of ArchaeologyOxfordUK
  2. 2.Museo de Historia Natural de San RafaelSan RafaelArgentina

Personalised recommendations