Flight 4.0: The Changing Technology Landscape of Aeronautics

  • Umut DurakEmail author


This chapter draws the readers into a comprehensive discussion about the advances in Information and Communication Technologies (ICT) and their influence on the technology landscape of aeronautics. It gives a rough overview of the advances in technical systems from the industrial revolution up until Industry 4.0 and elaborates the reflection of these advancements in aeronautics from the pioneers era toward Flight 4.0. It briefly describes various recent fields of research in ICT such as Cyber-Physical Systems (CPS), Internet of Things (IoT) , wireless networks, multi-core architectures, Service-Oriented Architecture (SOA), cloud computing, big data, and modern software engineering methodologies as the parts of future aeronautical engineering body of knowledge. Thereafter, it describes aeronautical informatics as an establishing interdisciplinary field of study of applied informatics and aeronautics.


  1. 1.
    Collins English Dictionary - Complete & Unabridged 10th Edition (2017),
  2. 2.
    The American Heritage Science Dictionary (2017),
  3. 3.
    R. Blockley, W. Shyy, Encyclopedia of Aerospace Engineering (2010)Google Scholar
  4. 4.
    V. Hubka, W.E. Eder, Theory of Technical Systems: A Total Concept Theory for Engineering Design (Springer, Berlin, 2012)Google Scholar
  5. 5.
    B. Lukasch, O. Lilienthal, Der Vogelflug als Grundlage der Fliegekunst (Springer, Berlin, 2014)Google Scholar
  6. 6.
    P.L. Jakab, Visions of a Flying Machine: The Wright Brothers and the Process of Invention(Smithsonian Institution, 2014)Google Scholar
  7. 7.
    R.G. Grant, Flight-100 years of aviation. Aircr. Eng. Aerosp. Technol. 75(2) (2003)Google Scholar
  8. 8.
    D. McRuer, D. Graham, Flight control century: triumphs of the systems approach. J. Guid. Control Dyn. 27(2), 161–173 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Garg, R.I. Linda, T. Chowdhury, Evolution of aircraft flight control system and fly-by-light flight control system. Int. J. Emerg. Technol. Adv. Eng. 3(12), 60–64 (2013)Google Scholar
  10. 10.
    P. Traverse, I. Lacaze, J. Souyris, Airbus fly-by-wire: a process toward total dependability, in 25th Intenational Congress of the Aeronautical Sciences (2006)Google Scholar
  11. 11.
    E.L. Wiener, Human factors of advanced technology (glass cockpit) transport aircraft (1989)Google Scholar
  12. 12.
    N.B. Sarter, D.D. Woods, Pilot interaction with cockpit automation: operational experiences with the flight management system. Int. J. of Aviat. Psychol. 2(4), 303–321 (1992)CrossRefGoogle Scholar
  13. 13.
    C.R. Spitzer, Avionics: Elements, Software and Functions (CRC Press, 2016)Google Scholar
  14. 14.
    C.M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business Review Press, 2013)Google Scholar
  15. 15.
    H. Kagermann, J. Helbig, A. Hellinger, W. Wahlster, Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group (Forschungsunion, 2013)Google Scholar
  16. 16.
    Siemens, Our future depends on intelligent infrastructures (2014), (visited on 06/25/2017)
  17. 17.
    R. Kitchin, The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Prevot, NextGen technologies for mid-term and far-term air traffic control operations, in IEEE/AIAA 28th Digital Avionics Systems Conference, 2009. DASC’09 (IEEE, 2009), 2-AGoogle Scholar
  19. 19.
    P. Ky, B. Miaillier, SESAR: towards the new generation of air traffic management systems in Europe. J. Air Traffic Control 48(1) (2006)Google Scholar
  20. 20.
    A. Sipe, J. Moore, Air traffic functions in the NextGen and SESAR airspace, in 2009 IEEE/AIAA 28th Digital Avionics Systems Conference (2009).
  21. 21.
    FAA JPDO, Integrated Work Plan for the Next Generation Air Transportation System (2008)Google Scholar
  22. 22.
    K. Sampigethaya, R. Poovendran, Aviation cyber-physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Allerton, Principles of Flight Simulation (Wiley, 2009)Google Scholar
  24. 24.
    E.A. Lee, Cyber physical systems: design challenges, in 2008 11th IEEE International Symposium on Object Oriented real-time Distributed Computing (ISORC) (IEEE, 2008), pp. 363–369Google Scholar
  25. 25.
    K. Sampigethaya, R. Poovendran, Cyber-physical integration in future aviation information systems, in 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC) (IEEE, 2012), pp. 7C2–1Google Scholar
  26. 26.
    E.A. Lee, S.A. Seshia, Introduction to Embedded Systems: A Cyberphysical Systems Approach (MIT Press, 2016)Google Scholar
  27. 27.
    S. Jafer, U. Durak, Tackling the complexity of simulation scenario development in aviation, in Proceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems. MSCIAAS ’17 (Society for Computer Simulation International, Virginia Beach, Virginia, 2017), pp. 4:1–4:10. ISBN: 978-1-5108-4030-0,
  28. 28.
    R.T.C.A. Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast (ADSB) (RTCA, Incorporated, 2002)Google Scholar
  29. 29.
    FAA, Automatic Dependent Surveillance: Broadcast (ADS- B) Out Performance Requirements to Support Air Traffic Control (ATC) Service Final Rule, Standard (2010)Google Scholar
  30. 30.
    S. Ramasamy, R. Sabatini, A. Gardi, T. Kistan, Next generation flight management system for real-time trajectory based operations. Appl. Mech. Mater. 629, 344–349 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Giulietti, L. Pollini, M. Innocenti, Autonomous formation flight. IEEE Control Syst. 20(6), 34–44 (2000)CrossRefGoogle Scholar
  32. 32.
    P. Wellner, W. Mackay, R. Gold, Computer-augmented environments: back to the real world. Commun. ACM 36(7), 24–27 (1993)CrossRefGoogle Scholar
  33. 33.
    M. Weiser, Hot topics-ubiquitous computing. Computer 26(10), 71–72 (1993)CrossRefGoogle Scholar
  34. 34.
    I.A. Essa, Ubiquitous sensing for smart and aware environments. IEEE Pers. Commun. 7(5), 47–49 (2000)CrossRefGoogle Scholar
  35. 35.
    K. Domdouzis, B. Kumar, C. Anumba, Radio-frequency identification (RFID) applications: a brief introduction. Adv. Eng. Inf. 21(4), 350–355 (2007)CrossRefGoogle Scholar
  36. 36.
    F.L. Lewis et al., Smart environments: technologies, protocols, and applications, Wireless Sensor Networks (2004), pp. 11–46CrossRefGoogle Scholar
  37. 37.
    V. Coskun, B. Ozdenizci, K. Ok, A survey on near field communication (NFC) technology. Wirel. Pers. Commun. 71(3), 2259–2294 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)CrossRefGoogle Scholar
  40. 40.
    P. Mell, T. Grance et al., The NIST definition of cloud computing (2011)Google Scholar
  41. 41.
    L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  42. 42.
    T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design (Pearson Education India, 2005)Google Scholar
  43. 43.
    M.A. Beyer, D. Laney, The importance of ‘big data’: a definition (Gartner, Stamford, CT, 2012), pp. 2014–2018Google Scholar
  44. 44.
    M. Chen, S. Mao, Y. Liu, Big data: a survey. Mob. Netw. Appl. 19(2), 171 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Cuzzocrea, I.-Y. Song, K. C. Davis, Analytics over large-scale multidimensional data: the big data revolution! in Proceedings of the ACM 14th International Workshop on Data Warehousing and OLAP (ACM, 2011), pp. 101–104Google Scholar
  46. 46.
    Wind River, Internet of Things in Commercial Aviation (2015), Accessed 25 June 2017
  47. 47.
    J.S. Meserole, J.W. Moore, What is system wide information management (SWIM)? IEEE Aerosp. Electron. Syst. Mag. 22(5), 13–19 (2007)CrossRefGoogle Scholar
  48. 48.
    B. Marr, How Big Data Drives Success At Rolls-Royce (2015), Accessed 25 June 2017
  49. 49.
    S. Li, Y. Yang, L. Yang, H. Su, G. Zhang, J. Wang, Civil aircraft big data platform, in 2017 IEEE 11th International Conference on Semantic Computing (ICSC) (IEEE, 2017), pp. 328–333Google Scholar
  50. 50.
    A. Tyagi, J. Nanda, ATLAS: big data storage and analytics tool for ATM researchers. AIAA Infotech Aerosp. 0577(2016)Google Scholar
  51. 51.
    N.R.C. Aeronautics Technology Possibilities for 2000: Report of a Workshop (National Academies, 1984)Google Scholar
  52. 52.
    MIT, Aeronautics and Astronautics (2017), Accessed 07 July 2017
  53. 53.
    E.M. Atkins, Education in the crosscutting sciences of aerospace and computing. J. Aerosp. Inf. Syst. (2014)Google Scholar
  54. 54.
    K. Steinbuch, Informatik: Automatische Informationsverarbeitung, in SEGNachrichten (Technische Mitteilungen der Standard Elektrik Gruppe)-Firmenzeitschrift 4 (1957), p. 171Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)BraunschweigGermany

Personalised recommendations