Subject-Specific Academic Language Versus Mathematical Discourse

  • Marcus Schütte
Part of the ICME-13 Monographs book series (ICME13Mo)


The significance of language for the learning of mathematics has long been thematised in mathematics education research. Since Austin and Howson provided the first overview of the state of research in 1979, the field has become more differentiated. The present article will discuss one area of research emerging from this differentiation—multilingual contexts. This example shows how mathematics and language as a research field has developed from dichotomous approaches towards the idea that the language of mathematics is characterised differently in different cultural and group contexts, thus emphasising discursive aspects. This trend gives rise to the question of how the individual resources of participants can be acknowledged and exploited in groups with different abilities, while simultaneously providing the participants with the necessary linguistic support to participate in the linguistic discourse of that group.


Mathematical discourse Academic language Multilingual context Social interaction Interactionistic approaches of interpretive classroom research 


  1. Aukerman, M. (2007). A culpable CALP: Rethinking the conversational/academic language proficiency distinction in early literacy instruction. The Reading Teacher, 60(7), 626–635.CrossRefGoogle Scholar
  2. Austin, J. L., & Howson, A. G. (1979). Language and mathematical education. Educational Studies in Mathematics, 10, 161–197.CrossRefGoogle Scholar
  3. Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In T. J. Cooney & D. A. Grouws (Eds.), Effective mathematics teaching (pp. 27–46). Reston, VA: National Council of Teachers of Mathematics and Lawrence Erlbaum Associates.Google Scholar
  4. Bauersfeld, H. (2000). Radikaler Konstruktivismus, Interaktionismus und Mathematikunterricht. In E. Begemann (Ed.), Lernen verstehen—Verstehen lernen (pp. 117–144). Frankfurt am Main: Peter Lang.Google Scholar
  5. Bauersfeld, H., Krummheuer, G., & Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H. G. Steiner & H. Vermandel (Eds.), Foundations and methodology of the discipline mathematics education (didactics of mathematics) (pp. 174–188). Antwerp: University of Antwerp.Google Scholar
  6. Bernstein, B. (1996). Pedagogy, symbolic control and identity. London: Taylor & Francis.Google Scholar
  7. Bishop, A. J. (1988). Mathematics education in its cultural context. Educational Studies in Mathematics, 19(2), 179–191.CrossRefGoogle Scholar
  8. Brandt, B. (2013). Everyday pedagogical practices in mathematical play situations in German “Kindergarten”. Educational Studies in Mathematics, 84, 227–248.CrossRefGoogle Scholar
  9. Chapman, A. (2003). Language practices in school mathematics. Lewiston, NY: Edwin Mellen Press.Google Scholar
  10. Cloran, C. (1999). Contexts for learning. In F. Christie (Ed.), Pedagogy and the shaping of consciousness: Linguistic and social processes (pp. 3–65). London: Casell.Google Scholar
  11. Cobb, P. (1989). Experiential, cognitive, and anthropological perspectives in mathematics education. For the Learning of Mathematics, 9(2), 32–43.Google Scholar
  12. Cummins, J. (1979). Cognitive/academic language proficiency, linguistic interdependence, the optimum age question and some other matters. Working Papers on Bilingualism, 19, 121–129.Google Scholar
  13. Cummins, J. (2000). Language, power and pedagogy. Bilingual children in the crossfire. Clevedon: Multilingual Matters Ltd.Google Scholar
  14. D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics, 5(1), 41–48.Google Scholar
  15. Fetzer, M., & Tiedemann, K. (2015). The interplay of language and objects in the mathematics classroom. In K. Krainer & N. Vondrová (Eds.), Proceedings of the 9th congress of the European society for research in mathematics education (pp. 1414–1420). Prague, Czech Republic: CERME.Google Scholar
  16. Gallop, R., & Kirkman, D. F. (1972). An investigation into relative performances on a bilingual test paper in mechanical mathematics. Educational Research, 15(1), 63–71.CrossRefGoogle Scholar
  17. Gellert, U. (2011). Mediale Mündlichkeit und Dekontextualisierung. In S. Prediger & E. Özdil (Eds.), Mathematiklernen unter Bedingungen der Mehrsprachigkeit—Stand und Perspektiven der Forschung und Entwicklung in Deutschland (pp. 97–116). Münster: Waxmann.Google Scholar
  18. Goffman, E. (1974). Frame analysis. An essay on the organisation of experience. Cambridge: Harvard University Press.Google Scholar
  19. Gogolin, I. (2006). Bilingualität und die Bildungssprache der Schule. In P. Mecheril & T. Quehl (Eds.), Die Macht der Sprachen. Englische Perspektiven auf die mehrsprachige Schule (pp. 79–85). Münster: Waxmann.Google Scholar
  20. Halliday, M. A. K. (1975). Some aspects of sociolinguistics. In Interactions between linguistics and mathematical education (pp. 64–73). Copenhagen: UNESCO.Google Scholar
  21. Halliday, M. A. K. (1989). Spoken and written language. Oxford: University Press.Google Scholar
  22. Hymes, D. (1972). On communicative competence. In J. B. Pride & J. Holmes (Eds.), Sociolinguistics. Selected readings (pp. 269–293). Harmondsworth: Penguin.Google Scholar
  23. Krummheuer, G. (1992). Lernen mit „Format” Elemente einer interaktionistischen Lerntheorie. Diskutiert an Beispielen mathematischen Unterrichts. Weinheim: Deutscher Studien Verlag.Google Scholar
  24. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning. Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  25. Krummheuer, G. (1998). Formats of argumentation in the mathematics classroom. In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 223–234). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  26. Krummheuer, G. (2011). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. ZDM: The International Journal on Mathematics Education, 43(1/2), 81–90.CrossRefGoogle Scholar
  27. Krummheuer, G. (2012). The “non-canonical” solution and the “improvisation” as conditions for early years mathematics learning processes: The concept of the “Interactional Niche in the Development of Mathematical Thinking” (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338.CrossRefGoogle Scholar
  28. Krummheuer, G., & Brandt, B. (2001). Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule. Weinheim: Beltz Verlag.Google Scholar
  29. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.CrossRefGoogle Scholar
  30. Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 19–44). Westport, CT: Ablex.Google Scholar
  31. Maier, H., & Schweiger, F. (1999). Mathematik und Sprache: Zum Verstehen und Verwenden von Fachsprache im Mathematikunterricht. Vienna: öbv und hpt.Google Scholar
  32. Maier, H., & Voigt, J. (Eds.). (1991). Interpretative Unterrichtsforschung. IDM 17. Aulis: Köln.Google Scholar
  33. Meyer, M., & Prediger, S. (2011). The use of first language Turkish as a resource—A German case study on chances and limits for building conceptual understanding. In M. Setati, T. Nkambule, & L. Goosen (Eds.), Proceedings of the ICMI study 21—Mathematics and language diversity (pp. 225–234). Sao Paulo.Google Scholar
  34. Morgan, C. (2014). Discourse analytic approaches in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 176–181). Dordrecht: Springer, Netherlands.Google Scholar
  35. Morgan, C., Craig, T., Schütte, M., & Wagner, D. (2014). Language and communication in mathematics education: An overview of research in the field. ZDM: The International Journal on Mathematics Education, 46, 843–853.CrossRefGoogle Scholar
  36. Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical Thinking and Learning, 4(2&3), 189–212.CrossRefGoogle Scholar
  37. Pimm, D. (1987). Speaking mathematically. London: Routledge.Google Scholar
  38. Planas, N., & Civil, M. (2013). Language-as-resource and language-as-political: Tensions in the bilingual mathematics classroom. Mathematics Education Research Journal, 25, 361–378.CrossRefGoogle Scholar
  39. Planas, N., & Morera, L. (2011). Revoicing in processes of collective mathematical argumentation among students. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the seventh congress of the European society for research in mathematics education (pp. 1356–1365). Rzeszów, Poland: University of Rzeszów.Google Scholar
  40. Prediger, S. (2002). Kommunikationsbarrieren beim Mathematiklernen-Analysen aus kulturalistischer Sicht. In S. Prediger, K. Lengnink, & F. Siebel (Eds.), Mathematik und Kommunikation (pp. 91–106). Mühltal: Verlag Allgemeine Wissenschaft.Google Scholar
  41. Schütte, M., & Krummheuer, G. (2013). Changing mathematical content-related domains—A genuine mathematical action? In A. M. Lindmeyer & A. Heinze (Eds.), Proceedings of the 37th conference of the international group for the psychology of mathematics education—Mathematics learning across the life span (Vol. 4, pp. 185–192). Kiel, Germany: Institut für die Pädagogik der Naturwissenschaften (IPN).Google Scholar
  42. Schütte, M. (2009). Sprache und Interaktion im Mathematikunterricht der Grundschule. Zur Problematik einer Impliziten Pädagogik für schulisches Lernen im Kontext sprachlich-kultureller Pluralität. Münster: Waxmann.Google Scholar
  43. Schütte, M. (2014). Language-related specialised learning in mathematics. A comparison of learning settings: Family, nursery and primary school. ZDM: The International Journal on Mathematics Education, 46(6), 923–938.CrossRefGoogle Scholar
  44. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  45. Steinbring, H. (2006). What makes a sign a “mathematical sign”? An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.CrossRefGoogle Scholar
  46. Wagner, D. (2007). Students’ critical awareness of voice and agency in mathematics classroom discourse. Mathematical Thinking and Learning, 9(1), 31–50.Google Scholar
  47. Wertsch, J. V. (1981). The concept of activity in Soviet psychology. Armonk, NY: M. E. Sharpe.Google Scholar
  48. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technical University DresdenDresdenGermany

Personalised recommendations