Advertisement

“I Am Sorry. I Did Not Understand You”: The Learning of Dialogue by Prospective Teachers

  • Raquel Milani
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

This text concerns the process of prospective teachers learning to engage in dialogue with their students in mathematics classes to promote learning. A teaching practice course on mathematics was designed to promote a meeting between the prospective teachers and the concept of dialogue. Investigation, reflection and planning activities were developed to provide such a meeting. The chapter focuses on the dialogue practice of one prospective teacher in the teaching course. Based on these practices of dialogue and theoretical inspirations about dialogue and about interaction, I propose an interpretation for dialogue, whose underlying political stance assumes that the talk is shared by those involved in it. I emphasize the move of going to where the other is in order to understand what she/he says, and also propose some actions that could contribute to the process of learning to be engaged in dialogue.

Keywords

Learning of dialogue Mathematics teacher education Critical mathematics education Pedagogical imagination 

References

  1. Almeida, M. G., & Fernandes, J. A. (2010). A comunicação promovida por futuros professores na aula de Matemática. Zetetike, 18(34), 109–154.Google Scholar
  2. Alrø, H., & Skovsmose, O. (2004). Dialogue and learning in mathematics education: Intention, reflection, critique. Dordrecht, Netherlands: Kluwer Academic.Google Scholar
  3. Ball, D. L., & Fornazi, F. M. (2009). The work of teaching and the challenge for teacher education. Journal of Teacher Education, 60(5), 497–511.CrossRefGoogle Scholar
  4. Chapin, S. H., O’Connor, C., & Anderson, N. C. (2009). Classroom discussions: Using math talk to help students learn. Sausalito, CA: Math Solutions Publications.Google Scholar
  5. Creswell, J. W. (2007). Projeto de pesquisa: Métodos qualitativo, quantitativo e misto (L. O. Rocha, Trans.). Porto Alegre: Artmed.Google Scholar
  6. Denzin, N. K., & Lincoln, Y. S. (2006). A disciplina e a prática da pesquisa qualitativa. In N. K. Denzin & Y. S. Lincoln (Eds.), O planejamento da pesquisa qualitativa: Teorias e abordagens (S. R. Netz, Trans.). (pp. 15–41). Porto Alegre: Artmed.Google Scholar
  7. Freire, P. (2005). Pedagogia do oprimido. Rio de Janeiro: Paz e Terra.Google Scholar
  8. Jarvis, P. (1999). The practioner-researcher: Developing theory from practice. San Francisco, USA: Jossey-Bass Publishers.Google Scholar
  9. Lins, R. C. (1999). Por que discutir teoria do conhecimento é relevante para a Educação Matemática. In M. A. V. Bicudo (Ed.), Pesquisa em Educação Matemática: Concepções & perspectivas (pp. 75–94). São Paulo: Editora UNESP.Google Scholar
  10. Lins, R. C. (2004). Matemática, monstros, significados e educação matemática. In M. A. V. Bicudo & M. Borba (Eds.), Educação Matemática: Pesquisa em movimento (pp. 92–120). São Paulo: Cortez.Google Scholar
  11. Mehan, H. (1979). “What time is it, Denise?”: Asking known information questions in classroom discourse. Theory into Practice, 18(4), 285–294.CrossRefGoogle Scholar
  12. Milani, R. (2015). O processo de aprender a dialogar por futuros professores de matemática com seus alunos no estágio supervisionado (Unpublished doctoral dissertation). State University of Sao Paulo, Rio Claro, Brazil.Google Scholar
  13. Moyer, P. S., & Milewicz, E. (2002). Learning to question: Categories of questioning used by preservice teachers during diagnostic mathematics interviews. Journal of Mathematics Teacher Education, 5(4), 293–315.CrossRefGoogle Scholar
  14. Oliveira, V. C. A. (2012). Sobre as ideias de estranhamento e descentramento na formação de professores de professores de matemática. In C. L. Angelo, E. P. Barbosa, J. R. V. Santos, S. C. Dantas, & V. C. A. Oliveira (Eds.), Modelo dos campos semânticos e educação matemática: 20 anos de história (pp. 199–216). São Paulo: Midiograf.Google Scholar
  15. Penteado, M. G. (2001). Computer-based learning environments: Risks and uncertainties for teachers. Ways of Knowing Journal, 1(2), 23–35.Google Scholar
  16. Sinclair, J., & Coulthard, M. (1975). Towards an analysis of discourse: The English used by teachers and pupils. Oxford, UK: Oxford University Press.Google Scholar
  17. Skovsmose, O. (2001). Landscapes of investigation. Zentralblatt fur Didaktik der Mathematik, 33(4), 123–132.CrossRefGoogle Scholar
  18. Skovsmose, O. (2009). Researching possibilities. In M. Setati, R. Vithal, C. Malcolm, & R. Dhunpath (Eds.), Researching possibilities in mathematics, science and technology education (pp. 105–119). New York: Nova Science Publishers.Google Scholar
  19. Skovsmose, O. (2014). Researching possibilities. In O. Skovsmose (Ed.), Critique as uncertainty (pp. 111–126). Charlotte: Ed. Information Age Publishing.Google Scholar
  20. Streitlien, A. (2010). Pupils’ participation in the classroom discourse of mathematics. In B. Sriraman et al. (Eds.), The first sourcebook on Nordic research in mathematics education (pp. 211–222). Charlotte, NC: Information Age Publishing Inc.Google Scholar
  21. Wallach, T., & Even, R. (2005). Hearing students: The complexity of understanding what they are saying, showing, and doing. Journal of Mathematics Teacher Education, Netherlands, 8(5), 393–417.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of São PauloSão PauloBrazil

Personalised recommendations