Skip to main content

Explaining as Mathematical Discursive Practices of Navigating Through Different Epistemic Fields

  • Chapter
  • First Online:
Language and Communication in Mathematics Education

Part of the book series: ICME-13 Monographs ((ICME13Mo))

  • 1167 Accesses

Abstract

This chapter introduces a conceptualisation of explaining as mathematical discursive practices of navigating through different epistemic fields and uses this framework for analysing collective explanations in whole-class discussions. The framework coordinates Interactional Discourse Analysis from linguistics with interactionist and epistemological perspectives from mathematics education. After outlining the main ideas of the three perspectives on explaining, I describe how the notion of practices functionally links theories from linguistics and mathematics education. Furthermore, I show how the conceptualisation simultaneously highlights the interactive nature of explaining processes while also keeping the mathematical content in focus. Finally, I outline the method of identifying explaining practices in transcribed video data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., et al. (Eds.). (2001). A taxonomy for learning, teaching, and assessing. A revision of Bloom’s taxonomy of educational objectives. New York, NY: Longman.

    Google Scholar 

  • Barwell, R. (2012). Discursive demands and equity in second language mathematics classroom. In B. Herbel-Eisenmann, J. Choppin, D. Wagner, & D. Pimm (Eds.), Equity in discourse for mathematics education. Theories, practices, and politics (pp. 147–163). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Barwell, R., Clarkson, P., Halai, A., Kazima, M., Moschkovich, J., Planas, N., et al. (Eds.). (2016). Mathematics education and language diversity. The 21st ICMI study. Cham, Switzerland: Springer.

    Google Scholar 

  • Barzel, B., Leuders, T., Prediger, S., & Hußmann, S. (2013). Designing tasks for engaging students in active knowledge organization. In A. Watson, M. Ohtani, J. Ainley, J. Bolite Frant, M. Doorman, C. Kieran, … Y. Yang (Eds.), ICMI study 22 on task design—Proceedings of study conference (pp. 285–294). Oxford, UK: ICME.

    Google Scholar 

  • Bergmann, J. R., & Luckmann, T. (1995). Reconstructive genres of everyday communication. In U. Quasthoff (Ed.), Aspects of oral communication (pp. 289–304). Berlin, Germany: de Gruyter.

    Google Scholar 

  • Blumer, H. (1969). Symbolic interactionism. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Brousseau, G. (1997). The theory of didactical situations in mathematics. Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Cobb, P. (1998). Analyzing the mathematical learning of the classroom community. The case of statistical data analysis. In O. Alwyn (Ed.), Proceedings of the 22nd conference of the international group for the psychology of mathematics education (Vol. 1, pp. 33–48). Stellenbosch, South Africa: University of Stellenbosch.

    Google Scholar 

  • Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning. Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices. The Journal of the Learning Science, 10(1&2), 113–163.

    Article  Google Scholar 

  • Erath, K. (2017a). Mathematisch diskursive Praktiken des Erklärens. Rekonstruktion von Unterrichtsgesprächen in unterschiedlichen Mikrokulturen. Wiesbaden, Germany: Springer.

    Google Scholar 

  • Erath, K. (2017b). Implicit and explicit practices of establishing explaining practices. Ambivalent learning opportunities in classroom discourse. In T. Dooley & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (pp. 1260–1267). Dublin, Ireland: DCU Institute of Education and ERME.

    Google Scholar 

  • Erath, K., & Prediger, S. (2014). Mathematical practices as underdetermined learning goals. The case of explaining diagrams. In S. Oesterle, P. Liljedahl, C. Nicol, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 3, pp. 17–24). Vancouver, Canada: PME.

    Google Scholar 

  • Erath, K., & Prediger, S. (2015). Diverse epistemic participation profiles in socially established explaining practices. In K. Krainer & N. Vondrova (Eds.), CERME 9. Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 1374–1381). Prague, Czech Republic: CERME.

    Google Scholar 

  • Erath, K., Prediger, S., Heller, V., & Quasthoff, U. (in review). Learning to explain or explaining to learn? Discourse competences as an important facet of academic language proficiency.

    Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Gee, J. (1996). An introduction to discourse analysis. Theory and method. New York, NY: Routledge.

    Google Scholar 

  • Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge. The case of mathematics. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kolbe, F.-U., Reh, S., Fritzsche, B., Idel, T.-S., & Rabenstein, K. (2008). Lernkultur. Überlegungen zu einer kulturwissenschaftlichen Grundlegung qualitativer Unterrichtsforschung. Zeitschrift Für Erziehungswissenschaft, 11(1), 125–143.

    Article  Google Scholar 

  • Krummheuer, G. (2011). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. ZDM Mathematics Education, 43, 81–90.

    Article  Google Scholar 

  • Lampert, M., & Cobb, P. (2003). Communication and learning in the mathematics classroom. In J. Kilpatrick & D. Shifter (Eds.), Research companion to the NCTM standards (pp. 237–249). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Mayring, P. (2015). Qualitative content analysis. Theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Morek, M. (2012). Kinder erklären. Interaktion in Familie und Unterricht im Vergleich. Tübingen: Stauffenburg.

    Google Scholar 

  • Morek, M., Heller, V., & Quasthoff, U. (2017). Erklären und Argumentieren. Modellierungen und empirische Befunde zu Strukturen und Varianzen. In E. L. Wyss (Ed.), Erklären und Argumentieren. Konzepte und Modellierungen in der Angewandten Linguistik (pp. 11–46). Tübingen: Stauffenburg.

    Google Scholar 

  • Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical Thinking and Learning, 4(2&3), 189–212.

    Article  Google Scholar 

  • Moschkovich, J. (2013). Issues regarding the concept of mathematical practices. In Y. Li & J. Moschkovich (Eds.), Proficiency and beliefs in learning and teaching mathematics (pp. 257–275). Rotterdam, Netherlands: Sense Publishers.

    Chapter  Google Scholar 

  • Moschkovich, J. (2015). Academic literacy in mathematics for English learners. Journal of Mathematical Behaviour, 40, 43–62.

    Article  Google Scholar 

  • Nickson, M. (1992). The culture of the mathematics classroom: An unknown quantity? In D. A. Grouws (Ed.), Handbook of the research on mathematics teaching and learning (pp. 101–114). New York, NY: Macmillan Publishing Company.

    Google Scholar 

  • Prediger, S. (2013). Darstellungen, Register und mentale Konstruktion von Bedeutungen und Beziehungen. Mathematikspezifische sprachliche Herausforderungen identifizieren und bearbeiten. In M. Becker-Mrotzek, K. Schramm, E. Thürmann, & H. J. Vollmer (Eds.), Sprache im Fach. Sprachlichkeit und fachliches Lernen (pp. 167–183). Münster: Waxmann.

    Google Scholar 

  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches. First steps towards a conceptual framework. ZDM Mathematics Education, 40, 165–178.

    Article  Google Scholar 

  • Prediger, S., & Erath, K. (2014). Content, or interaction, or both? Synthesizing two German traditions in a video study on learning to explain in mathematics classroom microcultures. Eurasia Journal of Mathematics, Science & Technology Education, 10(4), 313–327.

    Article  Google Scholar 

  • Quasthoff, U., & Heller, V. (2014). Mündlichkeit und Schriftlichkeit aus sprachwissenschaftlicher und sprachdidaktischer Sicht. Grundlegende Ein-/Ansichten und methodischen Anregungen. In A. Neumann & I. Mahler (Eds.), Empirische Methoden in der Deutschdidaktik. Audio- und videografierende Unterrichtsforschung (pp. 6–37). Baltmannsweiler: Schneider Verlag Hohengehren.

    Google Scholar 

  • Quasthoff, U., Heller, V., & Morek, M. (2017). On the sequential organization and genre-orientation of discourse units in interaction. An analytic framework. Discourse Studies, 19(1), 84–110.

    Google Scholar 

  • Quasthoff, U., & Morek, M. (2015). Diskursive Praktiken von Kindern in außerschulischen und schulischen Kontexten (DisKo). Abschlussbericht für das DFG-geförderte Forschungsprojekt. http://www.disko.tu-dortmund.de/disko/Medienpool/Abschlussbericht-DisKo.pdf. Accessed October 17, 2015.

  • Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourse, and mathematizing. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Sierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 827–876). Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Vollrath, H.-J. (2001). Grundlagen des Mathematikunterrichts in der Sekundarstufe. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • vom Hofe, R., Kleine, M., Blum, W., & Pekrun, R. (2005). The effect of mental models (“Grundvorstellungen”) for the development of mathematical competencies. First results of the longitudinal study PALMA. In Proceedings of the 4th CERME, Sant Feliu de Guixols, Spain, 2005 (pp. 142–151). Barzelona, Spain: FUNDEMI IQS—Universitat Ramon Llull.

    Google Scholar 

  • Wagenschein, M. (1968). Verstehen lehren. Genetisch - Sokratisch - Exemplarisch. Weinheim: Beltz.

    Google Scholar 

  • Winter, H. (1983). Über die Entfaltung begrifflichen Denkens im Mathematikunterricht. Journal Für Mathematik-Didaktik, 4(3), 175–204.

    Article  Google Scholar 

  • Yackel, E. (2004). Theoretical perspectives for analyzing explanation, justification and argumentation in mathematics classrooms. Journal of the Korean Society of Mathematical Education Series D: Research in Mathematical Education, 8(1), 1–18.

    Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

    Article  Google Scholar 

  • Yackel, E., Rasmussen, C., & King, K. (2000). Social and sociomathematical norms in an advanced undergraduate mathematics course. Journal of Mathematical Behaviour, 19, 275–287.

    Article  Google Scholar 

Download references

Grant Information

The research project INTERPASS (Interactive procedures for establishing matches and divergences in linguistic and microcultural practices) is funded by the German ministry BMBF (grant 01JC1112, grant holder S. Prediger). I have conducted it under the guidance of Susanne Prediger and Uta Quasthoff, together with Anna-Marietha Vogler and Vivien Heller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstin Erath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erath, K. (2018). Explaining as Mathematical Discursive Practices of Navigating Through Different Epistemic Fields. In: Moschkovich, J., Wagner, D., Bose, A., Rodrigues Mendes, J., Schütte, M. (eds) Language and Communication in Mathematics Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-75055-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75055-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75054-5

  • Online ISBN: 978-3-319-75055-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics