Skip to main content

Prospectus of Nanotechnology in Bioethanol Productions

  • Chapter
  • First Online:
Green Nanotechnology for Biofuel Production

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 5))

Abstract

Technological advancements and global energy requirements of the twenty-first century has resulted in alarming global warming situations and depletion of nonrenewable fossil fuels. The search for alternative sources of energy to curb the dependency on fossil fuels has, in turn, affected the attention toward biofuels like bioethanol. Bioethanol is one of the highly useful fuel additives given its eco-friendly and renewable potentials. Bioethanol production uses fermentation technology to convert carbohydrate rich biomass to biofuel, though high production costs and some technical glitches deemed a drawback. Nanotechnology could help overcome such challenges and help in the sustainable production of such biofuels. Various nanoparticles and nanomaterials have already been reported to have an impact on the biofuel productions like bioethanol. In this chapter, we explore the various interesting approaches and current trends of the usage of nanotechnology retrospective to bioethanol productions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    Article  Google Scholar 

  • Ahmad R, Sardar M (2014) Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study. Indian J Biochem Biophys 51:314–320

    Google Scholar 

  • Ahmed F, Li Y, Schenk PM (2012) Algal biorefinery: sustainable production of biofuels and aquaculture feed? In: Gordon R, Seckbach J (eds) the science of algal fuels: phycology, geology, biophotonics, genomics and nanotechnology. Cellular origin, life in extreme habitats and astrobiology, vol 25. Springer, Dordrecht, The Netherlands, pp 21–41

    Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    Article  Google Scholar 

  • Alftren J (2013) Immobilization of cellulases on magnetic particles to enable enzyme recycling during hydrolysis of lignocellulose. PhD thesis submitted to Institute for Food, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  • Brás TS, Fernandes MC, Luis JC, Neves LA (2013) Recovering bioethanol from olive bagasse fermentation by nanofiltration. Desalin Water Treat 51:4333–4342

    Article  Google Scholar 

  • Budarin V, Shuttleworth PS, Lanigan B, Clark JH (2013) Nanocatalysts for biofuels. In: Polshettiwar V, Asefa T (eds) Nanocatalysis synthesis and applications. Wiley, Hoboken, NJ, USA, pp 595–614. https://doi.org/10.1002/9781118609811.ch16

  • Cai HL, Li CZ, Wang AQ, Xu GL, Zhang T (2014) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B 123:333–338

    Google Scholar 

  • Chen WX, Yan Z, Yu WC, Xia WH (2012) Preparation and characterization of magnetic Fe3O4/CRGO nanocomposites for enzyme immobilization. Trans Nonferrous Metals Soc China 22:162–168

    Article  Google Scholar 

  • De-Oliveira MED, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55(7):593–602

    Article  Google Scholar 

  • Eggert H, Greaker M (2014) Promoting second generation biofuels: does the first generation pave the road? Energies 7:4430–4445

    Article  Google Scholar 

  • Feng JH, Xiong L, Ren XF, Ma ZH (2014) Silica supported perfluorobutylsulfonyl imide catalyzed hydrolysis of cellulose. J Wuhan Univ Technol Mater Sci Ed 5:9–14

    Google Scholar 

  • Fu CC, Hung TC, Chen JY, Su CH, Wu WT (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Biores Technol 101(22):8750–8754

    Article  Google Scholar 

  • Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28(49):16864–16873

    Article  Google Scholar 

  • Guo F, Fang Z, Xu CC, Richard L, Smith Jr (2012) Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci 38:672–690

    Article  Google Scholar 

  • Ji S, Lee I (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Biores Technol 133:45–50

    Article  Google Scholar 

  • Jordan J, Kumar CSS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68:139–146

    Article  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:298153. https://doi.org/10.1155/2014/298153

    Google Scholar 

  • Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171(2):669–673

    Article  Google Scholar 

  • Kim YK, Lee H (2016) Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour Technol 204:139–144

    Google Scholar 

  • Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSuschem 3(4):440–443

    Article  Google Scholar 

  • Kootstra AMJ, Mosier NS, Scott EL, Beeftink HH, Sanders JPM (2009) Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem Eng J 43:92–97

    Article  Google Scholar 

  • Ladole MR, Mevada JS, Pandit AB (2017) Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Biores Technol 239:117–126

    Article  Google Scholar 

  • Lee I, Wang W, Ji S (2012) Device and method for pretreatment of biomass. Board of Trustees of Michigan State University, assignee. United States patent US 20120036765

    Google Scholar 

  • Lee SM, Jin LH, Kim JH, Han SO, Na HB, Hyeon TH, Koo YM, Lee JH (2010) β-Glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141

    Google Scholar 

  • Leo VV, Passari AK, Joshi JB, Mishra VK, Uthandi S, Ramesh N, Singh BP (2016) A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Front Microbiol 7

    Google Scholar 

  • Malyala R, Jarand ML, Thompson TA, Wan H, Saha A, Chilachka I (2017) Biofuel production using nanozeolite catalyst. Cool Planet Energy Systems, Inc. US 20170009142 A1

    Google Scholar 

  • Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12:20140891

    Google Scholar 

  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  Google Scholar 

  • Ogasawara Y, Itagaki S, Kand Y, Mizuno (2011) Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. ChemSusChem 4(4):519–525

    Google Scholar 

  • Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  Google Scholar 

  • Patumsawad S (2011) 2nd Generation biofuels: technical challenge and R and D opportunity in Thailand. J Sustain Energy Environ (Special Issue) 47–50

    Google Scholar 

  • Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1–2):1–16

    Article  Google Scholar 

  • Qi X, Watanabe M, Aida TM, Smith RL Jr (2011) Catalytic conversion of cellulose into 5- hydroxymethylfurfural in high yields via a two-step process. Cellulose 18(5):1327–1333

    Article  Google Scholar 

  • Rai M, dos Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    Article  Google Scholar 

  • Reznik A, Israel A (2012) Fuel from seaweeds: rationale and feasibility. In: Gordon R, Seckbach J (eds) the science of algal fuels: phycology, geology, biophotonics, genomics and nanotechnology. Cellular origin, life in extreme habitats and astrobiology, vol 25. Springer, Dordrecht, The Netherlands, 343–354

    Google Scholar 

  • Salehi N, Mirjalili BBF (2017) Synthesis of highly substituted dihydro-2-oxopyrroles using Fe3O4@nano-cellulose–OPO3H as a novel bio-based magnetic nanocatalyst. RSC Adv 7:30303–30309

    Article  Google Scholar 

  • Shibuya M, Sasaki K, Tanaka Y, Yasukawa M, Takahashi T, Kondo A, Matsuyama H (2017) Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw. Bioresour Technol 235:405–410

    Google Scholar 

  • Sirajunnisa AR, Surendhiran D (2016) Algae—A quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sustain Energy Rev 66:248–267

    Article  Google Scholar 

  • Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12:1560–1563

    Google Scholar 

  • Verhoef A, Figoli A, Leen B, Bettens B, Drioli E, Van der Bruggen B (2008) Performance of a nanofiltration membrane for removal of ethanol from aqueous solutions by pervaporation. Sep Purif Technol 60:54–63

    Article  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilization with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39

    Article  Google Scholar 

  • Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenerg 51:35–42

    Article  Google Scholar 

  • Wang Y, Liu L, Meng C, Zhou, Y, Gao Z, Li, X, Cao X, Xu L, Zhu W (2016) A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures. Sci Rep 6:33092

    Google Scholar 

  • Winarto TD, Yamamoto E, Yasuoka K (2016) Separation of water–ethanol solutions with carbon nanotubes and electric fields. Phys Chem Chem Phys 18:33310–33319

    Google Scholar 

  • Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananuku W (2012) The potential of cellulosic ethanol production from grasses in thailand. J Biomed Biotechnol 2012(303748):1–10

    Article  Google Scholar 

  • Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454

    Article  Google Scholar 

  • Zhang F, Deng X, Fang Z, Zeng HY, Tian XF, Kozinski JA (2011) Hydrolysis of crystalline cellulose over Zn-Ca-Fe oxide catalyst. Petrochem Technol 40:43–48

    Google Scholar 

  • Zhu H, Shanks BH, Choi DW, Heindel TJ (2010) Effect of functionalized MCM41 nanoparticles on syngas fermentation. Biomass Bioenerg 34:1624–1627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhim Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leo, V.V., Singh, B.P. (2018). Prospectus of Nanotechnology in Bioethanol Productions. In: Srivastava, N., Srivastava, M., Pandey, H., Mishra, P., Ramteke, P. (eds) Green Nanotechnology for Biofuel Production. Biofuel and Biorefinery Technologies, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-75052-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75052-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75051-4

  • Online ISBN: 978-3-319-75052-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics