Skip to main content

Nanotechnology: A New Tool for Biofuel Production

  • Chapter
  • First Online:
Green Nanotechnology for Biofuel Production

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 5))

Abstract

Rapid depletion of fossil fuel reserves has posed a serious challenge to meet future energy requirement. Biodiesel with low carbon footprint has emerged as a potential candidate that can replace the need of fossil fuels. Biofuel derived from algae offers best alternative due to their high lipid content, robust nature, and noncompetitive nature toward food crops. The downstream production of biodiesel from feedstock is, however, facing challenges due to energy-intensive nature and higher production cost. A new and rapidly emerging field of nanotechnology has given a choice to built robust nanobiocatalytic systems with long-term stability and low input cost. Earlier studies reported that the addition of nanomaterials in algal culture system improved microalgal growth as well as induced lipid accumulation. Moreover, with the application of nanomaterials, the lipid extraction efficiency could also be enhanced. This chapter is aimed to review the current and significant applications of nanotechnology in the field of algal biodiesel production. Development of innovative technologies dealing with nanotechnological application in algal cultivation, lipid accumulation, harvesting, and transesterification has been critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014(825910):24. http://dx.doi.org/10.1155/2014/825910

  • Bitton GJLHG, Fox JL, Strickland HG (1975) Removal of algae from Florida lakes by magnetic filtration. Appl Microbiol 30(6):905–908

    Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23(8):4166–4173

    Article  Google Scholar 

  • Demirbas A (2009) Global renewable energy projections. Energy Sources Part B 4(2):212–224

    Article  Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 30(3):125–129

    Article  Google Scholar 

  • Eroglu E, Eggers PK, Winslade M, Smith SM, Raston CL (2013) Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chem 15(11):3155–3159

    Article  Google Scholar 

  • Farooq W, Lee YC, Han JI, Darpito CH, Choi M, Yang JW (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15(3):749–755

    Article  Google Scholar 

  • Ge J, Lu D, Wang J, Liu Z (2009) Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromol 10(6):1612–1618

    Article  Google Scholar 

  • Hu YR, Wang F, Wang SK, Liu CZ, Guo C (2013) Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Biores Technol 138:387–390

    Article  Google Scholar 

  • Hussein AK (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sustain Energy Rev 42:460–476

    Article  Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol 28(4):253–264

    Article  Google Scholar 

  • Johnson BF (2003) Nanoparticles in catalysis. Top Catal 24(1–4):147–159

    Article  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  Google Scholar 

  • Kang NK, Lee B, Choi GG, Moon M, Park MS, Lim J, Yang JW (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31(5):861–867

    Article  Google Scholar 

  • Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Yang JW (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31(6):862–876

    Google Scholar 

  • Kumar P, Mandotra SK, Suseela MR, Toppo K, Joshi P (2016) Characterization and transesterification of fresh water microalgal oil. Energy Sources Part A Recovery Util Environ Eff 38(6):857–864

    Article  Google Scholar 

  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2(1):1

    Article  Google Scholar 

  • Lee YC, Huh YS, Farooq W, Chung J, Han JI, Shin HJ, Park JY (2013a) Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour Technol 137:74–81

    Google Scholar 

  • Lee YC, Huh YS, Farooq W, Han JI, Oh YK, Park JY (2013b) Oil extraction by aminoparticle-based H2O2 activation via wet microalgae harvesting. RSC Advances 3(31):12802–12809

    Article  Google Scholar 

  • Lee YC, Lee HU, Lee K, Kim B, Lee SY, Choi MH, Oh YK (2014) Aminoclay-conjugated TiO2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp. Chem Eng J 245:143–149

    Google Scholar 

  • Lee YC, Lee K, Oh YK (2015) Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Biores Technol 184:63–72

    Article  Google Scholar 

  • Lin V, Mahoney P, Gibson K (2009) Nanofarming technology extracts biofuel oil without harming algae. News released from Office of Public Affairs

    Google Scholar 

  • Liu D, Wang P, Wei G, Dong W, Hui F (2013) Removal of algal blooms from freshwater by the coagulation–magnetic separation method. Environ Sci Pollut Res 20(1):60–65

    Article  Google Scholar 

  • López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6(1):38–56

    Article  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Biores Technol 201:222–229

    Article  Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Biores Technol 96(7):769–777

    Article  Google Scholar 

  • Pattarkine MV, Pattarkine VM (2012) Nanotechnology for algal biofuels. In: The Science of Algal Fuels. Springer, Netherlands, pp. 147–163

    Google Scholar 

  • Pernet F, Tremblay R (2003) Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38(11):1191–1195

    Article  Google Scholar 

  • Pienkos PT, Darzins AL (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin 3(4):431–440

    Article  Google Scholar 

  • Pompa PP, Martiradonna L, Della Torre A, Della Sala F, Manna L, De Vittorio M, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1(2):126–130

    Article  Google Scholar 

  • Razack SA, Duraiarasan S, Mani V (2016) Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnology Reports 11:70–76

    Article  Google Scholar 

  • Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11(1):63

    Article  Google Scholar 

  • Ríos SD, Salvadó J, Farriol X, Torras C (2012) Antifouling microfiltration strategies to harvest microalgae for biofuel. Biores Technol 119:406–418

    Article  Google Scholar 

  • Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties

    Google Scholar 

  • Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Biores Technol 101(19):7344–7349

    Article  Google Scholar 

  • San NO, KurÅŸungöz C, TümtaÅŸ Y, YaÅŸa Ö, Ortaç B, Tekinay T (2014) Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17:29–35

    Article  Google Scholar 

  • Sarma SJ, Das RK, Brar SK, Le Bihan Y, Buelna G, Verma M, Soccol CR (2014) Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy 78:16–22

    Article  Google Scholar 

  • Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35(4):291–311

    Article  Google Scholar 

  • Seo JY, Praveenkumar R, Kim B, Seo JC, Park JY, Na JG, Oh YK (2016) Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chem 18(14):3981–3989

    Google Scholar 

  • Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1(1):30

    Article  Google Scholar 

  • Toh PY, Yeap SP, Kong LP, Ng BW, Chan DJC, Ahmad AL, Lim JK (2012) Magnetophoretic removal of microalgae from fishpond water: feasibility of high gradient and low gradient magnetic separation. Chem Eng J 211:22–30

    Article  Google Scholar 

  • Torkamani S, Wani SN, Tang YJ, Sureshkumar R (2010) Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl Phys Lett 97(4):043703

    Article  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain energy 2(1):012701

    Article  Google Scholar 

  • Ullah F, Nosheen A, Hussain I, Banon A (2009) Base catalyzed transesterification of wild apricot kernel oil for biodiesel production. Afr J Biotechnol 8(14)

    Google Scholar 

  • United Nations Development Programme (UNDP) (2000) World Energy Assessment. Energy and the Challange of Sustainability, France

    Google Scholar 

  • Upadhyay AK, Mandotra SK, Kumar N, Singh NK, Singh L, Rai UN (2016) Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Biores Technol 221:430–437

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    Article  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97(1):23–39

    Article  Google Scholar 

  • Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27

    Google Scholar 

  • Wang SK, Stiles AR, Guo C, Liu CZ (2015) Harvesting microalgae by magnetic separation: a review. Algal Res 9:178–185

    Article  Google Scholar 

  • Wang SK, Wang F, Hu YR, Stiles AR, Guo C, Liu CZ (2013) Magnetic flocculant for high efficiency harvesting of microalgal cells. ACS Appl Mater Interfaces 6(1):109–115

    Article  Google Scholar 

  • Wang X, Dou P, Zhao P, Zhao C, Ding Y, Xu P (2009) Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. Chem Sus Chem 2(10):947–950

    Article  Google Scholar 

  • Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenerg 34(6):890–896

    Article  Google Scholar 

  • Yiu HH, Keane MA (2012) Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87(5):583–594

    Article  Google Scholar 

  • Zhang XL, Yan S, Tyagi RD, Surampalli RY (2013) Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sustain Energy Rev 26:216–223

    Article  Google Scholar 

  • Zhang XL, Yan S, Tyagi RD, Surampalli RY, Zhang TC (2010) Application of nanotechnology and nanomaterials for bioenergy and biofuel production. In: Bioenergy and Biofuel from Biowastes and Biomass. pp. 478–496

    Google Scholar 

  • Zimmerman WB, Hewakandamby BN, TesaÅ™ V, Bandulasena HH, Omotowa OA (2009) On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food Bioprod Process 87(3):215–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod W. Ramteke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandotra, S.K., Kumar, R., Upadhyay, S.K., Ramteke, P.W. (2018). Nanotechnology: A New Tool for Biofuel Production. In: Srivastava, N., Srivastava, M., Pandey, H., Mishra, P., Ramteke, P. (eds) Green Nanotechnology for Biofuel Production. Biofuel and Biorefinery Technologies, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-75052-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75052-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75051-4

  • Online ISBN: 978-3-319-75052-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics