Advertisement

The Neglected Problem of the Neurofeedback Learning (In)Ability

  • Rafał Łukasz Szewczyk
  • Marta Ratomska
  • Marta Jaśkiewicz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)

Abstract

Neurofeedback (NFB) as one of the biofeedback modalities has a very wide range of applications. Surprisingly, despite of its popularity, research on its effectiveness in many cases remains inconclusive. What is more, there are studies that have even brought contradictory results. For instance, the need to use individualised vs standard neurofeedback protocol is still under debate. In this article we point out the problem of the neurofeedback effectiveness underestimation which might result from the neglected neurofeedback learning inability phenomenon (also called as BCI-illiteracy). We suggest that there are three preconditions of the neurofeedback loop establishment, and subsequently, we reflect on their potential obstacles. We conclude by encouraging neurofeedback researchers and practitioners to pay more attention to observing and reporting the problem of the neurofeedback learning inability, as it is crucial factor for determining its real effectiveness.

References

  1. 1.
    Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehab. Eng. 8(2), 164–173 (2000).  https://doi.org/10.1109/TRE.2000.847807CrossRefGoogle Scholar
  2. 2.
    Evans, J.R., Abarbanel, A.: Introduction to Quantitative EEG and Neurofeedback. Academic Press, Orlando (1999)Google Scholar
  3. 3.
    Szewczyk, R.: Biofeedback. In: Borkowski, P. (ed.) Biofeedback Innowacje. Akademia im. Jana Długosza w Częstochowie (2015) Google Scholar
  4. 4.
    Demos, J.N.: Getting Started with Neurofeedback. WW Norton Co., New York (2005).  https://doi.org/10.1016/j.jpsychores.2005.08.007Google Scholar
  5. 5.
    Teplan, M.: Fundamentals of EEG measurement. Measur. Sci. Rev. 2(2), 1–11 (2002).  https://doi.org/10.1021/pr070350lGoogle Scholar
  6. 6.
    Alkoby, O., Abu-Rmileh, A., Shriki, O., Todder, D.: Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience (2017).  https://doi.org/10.1016/j.neuroscience.2016.12.050
  7. 7.
    Wan, F., Nan, W., Vai, M.I., Rosa, A.: Resting alpha activity predicts learning ability in alpha neurofeedback. Front. Human Neurosci. 8, 500 (2014).  https://doi.org/10.3389/fnhum.2014.00500CrossRefGoogle Scholar
  8. 8.
    Sterman, M.B., Friar, L.: Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalogr. Clin. Neurophysiol. 33(1), 89–95 (1972).  https://doi.org/10.1016/0013-4694(72)90028-4CrossRefGoogle Scholar
  9. 9.
    Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., Blankenhorn, V., Birbaumer, N.: Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia 42(3), 406–416 (2001)CrossRefGoogle Scholar
  10. 10.
    Sterman, M.B., Egner, T.: Foundation and practice of neurofeedback for the treatment of epilepsy. Appl. Psychophysiol. Biofeedback 31(1), 21–35 (2006).  https://doi.org/10.1007/s10484-006-9002-xCrossRefGoogle Scholar
  11. 11.
    Tan, G., Thornby, J., Hammond, D.C., Strehl, U., Canady, B., Arnemann, K., Kaiser, D.A.: Meta-analysis of EEG biofeedback in treating epilepsy. Clin. EEG Neurosci. 40(3), 173–179 (2009).  https://doi.org/10.1177/155005940904000310CrossRefGoogle Scholar
  12. 12.
    Strehl, U., Birkle, S.M., Wörz, S., Kotchoubey, B.: Sustained reduction of seizures in patients with intractable epilepsy after self-regulation training of slow cortical potentials - 10 years after. Front. Hum. Neurosci. 8(604), 1–7 (2014).  https://doi.org/10.3389/fnhum.2014.00604Google Scholar
  13. 13.
    Arns, M., de Ridder, S., Strehl, U., Breteler, M., Coenen, A.: Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40(3), 180–189 (2009).  https://doi.org/10.1177/155005940904000311CrossRefGoogle Scholar
  14. 14.
    Duric, N.S., Assmus, J., Gundersen, D., Elgen, I.B.: Neurofeedback for the treatment of children and adolescents with ADHD: a randomized and controlled clinical trial using parental reports. BMC Psychiatry 12(1), 107 (2012).  https://doi.org/10.1186/1471-244X-12-107CrossRefGoogle Scholar
  15. 15.
    Moriyama, T.S., Polanczyk, G., Caye, A., Banaschewski, T., Brandeis, D., Rohde, L.A.: Evidence-based information on the clinical use of neurofeedback for ADHD. Neurotherapeutics 9(3), 588–598 (2012).  https://doi.org/10.1007/s13311-012-0136-7CrossRefGoogle Scholar
  16. 16.
    Sonuga-Barke, E.J.S., Brandeis, D., Cortese, S., Daley, D., Ferrin, M., Holtmann, M., et al.: Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am. J. Psychiatry 170(3), 275–289 (2013).  https://doi.org/10.1176/appi.ajp.2012.12070991CrossRefGoogle Scholar
  17. 17.
    Choi, S.W., Chi, S.E., Chung, S.Y., Kim, J.W., Ahn, C.Y., Kim, H.T.: Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology 63(1), 43–51 (2010).  https://doi.org/10.1159/000322290CrossRefGoogle Scholar
  18. 18.
    Dias, Á.M., van Deusen, A.: A new neurofeedback protocol for depression. Spanish J. Psychol. 14(1), 374–384 (2011).  https://doi.org/10.5209/revCrossRefGoogle Scholar
  19. 19.
    Sokhadze, T.M., Cannon, R.L., Trudeau, D.L.: EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl. Psychophysiol. Biofeedback 33(1), 1–28 (2008).  https://doi.org/10.1007/s10484-007-9047-5CrossRefGoogle Scholar
  20. 20.
    Bolea, A.S.: Neurofeedback treatment of chronic inpatient Schizophrenia. J. Neurotherapy 14(1), 47–54 (2010).  https://doi.org/10.1080/10874200903543971CrossRefGoogle Scholar
  21. 21.
    Nan, W., Chang, L., Rodrigues, J. P., Wan, F., Mak, P. U., Mak, P. I., Vai, M., Rosa, A.: Neurofeedback for the treatment of schizophrenia: case study. In: Proceedings of IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurement Systems, VECIMS, vol. 139, pp. 78–81 (2012).  https://doi.org/10.1109/VECIMS.2012.6273182
  22. 22.
    Surmeli, T., Ertem, A., Eralp, E., Kos, I.H.: Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: a clinical case series. Clin. EEG Neurosci. (official journal of the EEG and Clinical Neuroscience Society (ENCS)) 43(2), 133–144 (2012).  https://doi.org/10.1177/1550059411429531CrossRefGoogle Scholar
  23. 23.
    Doppelmayr, M., Nosko, H., Fink, A.: An attempt to increase cognitive performance after stroke with neurofeedback. Biofeedback 35(4), 126–130 (2007). http://www.ncbi.nlm.nih.gov/pubmed/22081825Google Scholar
  24. 24.
    Rayegani, S.M., Raeissadat, S.A., Sedighipour, L., Rezazadeh, I.M., Bahrami, M.H., Eliaspour, D., Khosrawi, S.: Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top. Stroke Rehab. 21(2), 137–151 (2014).  https://doi.org/10.1310/tsr2102-137CrossRefGoogle Scholar
  25. 25.
    Kouijzer, M.E.J., Schie, H.T., Gerrits, B.J.L., Buitelaar, J.K., Moor, J.M.H.: Is EEG-biofeedback an effective treatment in autism spectrum disorders? A randomized controlled trial. Appl. Psychophysiol. Biofeedback 38, 17–28 (2012).  https://doi.org/10.1007/s10484-012-9204-3CrossRefGoogle Scholar
  26. 26.
    Thompson, M., Thompson, L.: Asperger’s syndrome intervention: combining neurofeedback, biofeedback and metacognition. Introduction to quantitative EEG and neurofeedback, pp. 365–415. Academic Press, San Diego (2009)CrossRefGoogle Scholar
  27. 27.
    Otiimer, S., Othmer, S.F.: Post traumatic stress disorder. Biofeedback 37(1), 24–31 (2009)CrossRefGoogle Scholar
  28. 28.
    Raymond, J., Sajid, I., Parkinson, L.A., Gruzelier, J.H.: Biofeedback and dance performance: a preliminary investigation. Appl. Psychophysiol. Biofeedback 30(1), 65–73 (2005).  https://doi.org/10.1007/s10484-005-2175-xCrossRefGoogle Scholar
  29. 29.
    Reiter, K., Andersen, S.B., Carlsson, J.: Neurofeedback treatment and Posttraumatic stress disorder. J. Nerv. Mental Dis. 204(2), 69–77 (2016).  https://doi.org/10.1097/NMD.0000000000000418CrossRefGoogle Scholar
  30. 30.
    Schenk, S., Lamm, K., Ladwig, K.H.: Effects of a neurofeedback-based alpha training on chronic tinnitus. Verhaltenstherapie 13(2), 2003 (2003)CrossRefGoogle Scholar
  31. 31.
    Hartmann, T., Lorenz, I., Müller, N., Langguth, B., Weisz, N.: The effects of neurofeedback on oscillatory processes related to tinnitus. Brain Topogr. 27(1), 149–157 (2014).  https://doi.org/10.1007/s10548-013-0295-9CrossRefGoogle Scholar
  32. 32.
    Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., Gruzelier, J.: The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 47(1), 75–85 (2003).  https://doi.org/10.1016/S0167-8760(02)00091-0CrossRefGoogle Scholar
  33. 33.
    Wang, J.R., Hsieh, S.: Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 124(12), 2406–2420 (2013).  https://doi.org/10.1016/j.clinph.2013.05.020CrossRefGoogle Scholar
  34. 34.
    Nan, W., Rodrigues, J.P., Ma, J., Qu, X., Wan, F., Mak, P.I., Mak, P.U., Vai, M.I., Rosa, A.: Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86(1), 83–87 (2012).  https://doi.org/10.1016/j.ijpsycho.2012.07.182CrossRefGoogle Scholar
  35. 35.
    Nan, W., Wan, F., Lou, C.I., Vai, M.I., Rosa, A.: Peripheral visual performance enhancement by neurofeedback training. Appl. Psychophysiol. Biofeedback 38(4), 285–291 (2013).  https://doi.org/10.1007/s10484-013-9233-6CrossRefGoogle Scholar
  36. 36.
    Egner, T., Gruzelier, J.: Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. NeuroReport 14(9), 1221–1224 (2003).  https://doi.org/10.1097/01.wnr.0000081875.45938.d1CrossRefGoogle Scholar
  37. 37.
    Gruzelier, J.: A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 10(Suppl. 1), S101–S109 (2009).  https://doi.org/10.1007/s10339-008-0248-5CrossRefGoogle Scholar
  38. 38.
    Gruzelier, J.H.: EEG-neurofeedback for optimising performance. II: creativity, the performing arts and ecological validity. Neurosci. Biobehav. Rev. 44, 142–158 (2014).  https://doi.org/10.1016/j.neubiorev.2013.11.004CrossRefGoogle Scholar
  39. 39.
    Gruzelier, J., Inoue, A., Smart, R., Steed, A., Steffert, T.: Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480(2), 112–116 (2010).  https://doi.org/10.1016/j.neulet.2010.06.019CrossRefGoogle Scholar
  40. 40.
    Yucha, C., Gilbert, C.: Evidence-Based Practice in Biofeedback and Neurofeedback. Association for Applied Psychophysiology and Biofeedback (AAPB), Wheat Ridge (2004)Google Scholar
  41. 41.
    Yucha, C.B., Montgomery, D.: Evidence-based practice in biofeedback and neurofeedback. Nursing 6656 (2008).  https://doi.org/10.1017/cbo9781107415324.004
  42. 42.
    Rossiter, T., La Vaque, T.: A comparison of EEG biofeedback and Psychostimulants in treating attention deficit/hyperactivity disorders. J. Neurotherapy 1(1), 48–59 (1995).  https://doi.org/10.1300/J184v01n01_07CrossRefGoogle Scholar
  43. 43.
    Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J.H., Kaiser, J.: Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with Methylphenidate. Appl. Psychophysiol. Biofeedback 28(1), 1–12 (2003).  https://doi.org/10.1023/A:1022353731579CrossRefGoogle Scholar
  44. 44.
    Rossiter, T.: The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: part I. Review of methodological issues. Appl. Psychophysiol. Biofeedback 29(2), 95–112 (2004).  https://doi.org/10.1023/B:APBI.0000026636.13180.b6CrossRefGoogle Scholar
  45. 45.
    deBeus, R.J., Kaiser, D.A.: Neurofeedback with children with attention deficit hyperactivity disorder: a randomized double-blind placebo-controlled study. In: Neurofeedback and Neuromodulation Techniques and Applications, pp. 127–152 (2011).  https://doi.org/10.1016/B978-0-12-382235-2.00005-6
  46. 46.
    Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., Birbaumer, N.: Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118(5), e1530–e1540 (2006).  https://doi.org/10.1542/peds.2005-2478CrossRefGoogle Scholar
  47. 47.
    Gevensleben, H., Holl, B., Albrecht, B., Schlamp, D., Kratz, O., Studer, P., Rothenberger, A., Moll, G.H., Heinrich, H.: Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. Eur. Child Adolesc. Psychiatry 19(9), 715–724 (2010).  https://doi.org/10.1007/s00787-010-0109-5CrossRefGoogle Scholar
  48. 48.
    Van Dongen-Boomsma, M., Vollebregt, M.A., Slaats-Willemse, D., Buitelaar, J.K.: A randomized placebo-controlled trial of electroencephalographic (EEG) neurofeedback in children with attention-deficit/hyperactivity disorder. J. Clin. Psychiatry 74(8), 821–827 (2013).  https://doi.org/10.4088/JCP.12m08321CrossRefGoogle Scholar
  49. 49.
    Evans, J., Rubi, M.: Ours is to reason why and how. In: Handbook of Neurofeedback: Dynamics and Clinical Applications, pp. 61–81. The Haworth Medical Press/The Haworth Press, Binghamton (2007).  https://doi.org/10.1080/1353333031000139273
  50. 50.
    Hammond, D.C.: What is neurofeedback: an update. J. Neurotherapy 15(4), 305–336 (2011).  https://doi.org/10.1080/10874208.2011.623090CrossRefGoogle Scholar
  51. 51.
    Holtmann, M., Stadler, C., Leins, U., Strehl, U., Birbaumer, N., Poustka, F.: Neurofeedback for the treatment of attention-deficit/hyperactivity disorder (ADHD) in childhood and adolescence. Zeitschrift Für Kinder- Und Jugendpsychiatrie Und Psychotherapie 32(3), 187–200 (2004)CrossRefGoogle Scholar
  52. 52.
    Little, K.D., Lubar, J.F., Cannon, R.: Neurofeedback: research-based treatment for ADHD. In: Handbook of Integrative Clinical Psychology, Psychiatry, and Behavioral Medicine: Perspectives, Practices, and Research, pp. 807–821 (2010)Google Scholar
  53. 53.
    Micoulaud-Franchi, J.-A., Geoffroy, P.A., Fond, G., Lopez, R., Bioulac, S., Philip, P.: EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front. Hum. Neurosci. 8, 1–7 (2014).  https://doi.org/10.3389/fnhum.2014.00906CrossRefGoogle Scholar
  54. 54.
    Lansbergen, M.M., Van Dongen-Boomsma, M., Buitelaar, J.K., Slaats-Willemse, D.: ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study. J. Neural Transm. 118(2), 275–284 (2011).  https://doi.org/10.1007/s00702-010-0524-2CrossRefGoogle Scholar
  55. 55.
    Hammond, D.C.: What is neurofeedback? J. Neurotherapy (Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience) 10(4), 25–36 (2007).  https://doi.org/10.1300/J184v10n04Google Scholar
  56. 56.
    Cortese, S., Ferrin, M., Brandeis, D., Holtmann, M., Aggensteiner, P., Daley, D., et al.: Neurofeedback for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J. Am. Acad. Child Adolesc. Psychiatry 55(6), 444–455 (2016).  https://doi.org/10.1016/j.jaac.2016.03.007CrossRefGoogle Scholar
  57. 57.
    Kamiya, J.: Operant control of the EEG alpha rhythm and some of its reported effects on consciousness. In: Tart, C. (ed.) Altered States of Consciousness, pp. 489–501 (1969)Google Scholar
  58. 58.
    Gruzelier, J.H.: EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44, 124–141 (2014).  https://doi.org/10.1016/j.neubiorev.2013.09.015CrossRefGoogle Scholar
  59. 59.
    Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., Klimesch, W.: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30(1), 1–10 (2005).  https://doi.org/10.1007/s10484-005-2169-8CrossRefGoogle Scholar
  60. 60.
    Weber, E., Köberl, A., Frank, S., Doppelmayr, M.: Predicting successful learning of SMR neurofeedback in healthy participants: methodological considerations. Appl. Psychophysiol. Biofeedback 36(1), 37–45 (2011).  https://doi.org/10.1007/s10484-010-9142-xCrossRefGoogle Scholar
  61. 61.
    Doehnert, M., Brandeis, D., Straub, M., Steinhausen, H.-C., Drechsler, R.: Slow cortical potential neurofeedback in attention deficit hyperactivity disorder: is there neurophysiological evidence for specific effects? J. Neural Transm. 115(10), 1445–1456 (2008).  https://doi.org/10.1007/s00702-008-0104-xCrossRefGoogle Scholar
  62. 62.
    Kotchoubey, B., Strehl, U., Holzapfel, S., Blankenhorn, V., Fröscher, W., Birbaumer, N.: Negative potential shifts and the prediction of the outcome of neurofeedback therapy in epilepsy. Clin. Neurophysiol. 110(4), 683–686 (1999).  https://doi.org/10.1016/S1388-2457(99)00005-XCrossRefGoogle Scholar
  63. 63.
    Kropotov, J.D., Grin-Yatsenko, V.A., Ponomarev, V.A., Chutko, L.S., Yakovenko, E.A., Nikishena, I.S.: ERPs correlates of EEG relative beta training in ADHD children. Int. J. Psychophysiol. 55(1), 23–34 (2005).  https://doi.org/10.1016/j.ijpsycho.2004.05.011CrossRefGoogle Scholar
  64. 64.
    Escolano, C., Aguilar, M., Minguez, J.: EEG-based upper alpha neurofeedback training improves working memory performance. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 2327–2330 (2011).  https://doi.org/10.1109/IEMBS.2011.6090651
  65. 65.
    Zoefel, B., Huster, R.J., Herrmann, C.S.: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage 54(2), 1427–1431 (2011).  https://doi.org/10.1016/j.neuroimage.2010.08.078CrossRefGoogle Scholar
  66. 66.
    Enriquez-Geppert, S., Huster, R.J., Scharfenort, R., Mokom, Z.N., Zimmermann, J., Herrmann, C.S.: Modulation of frontal-midline theta by neurofeedback. Biol. Psychol. 95(1), 59–69 (2013).  https://doi.org/10.1016/j.biopsycho.2013.02.019Google Scholar
  67. 67.
    Scheinost, D., Stoica, T., Wasylink, S., Gruner, P., Saksa, J., Pittenger, C., Hampson, M.: Resting state functional connectivity predicts neurofeedback response. Front. Behav. Neurosci. 8, 338 (2014).  https://doi.org/10.3389/fnbeh.2014.00338CrossRefGoogle Scholar
  68. 68.
    Kamiya, J.: The first communications about operant conditioning of the EEG. J. Neurotherapy 15(1), 65–73 (2011).  https://doi.org/10.1080/10874208.2011.545764CrossRefGoogle Scholar
  69. 69.
    Dekker, M.K.J., Sitskoorn, M.M., Denissen, A.J.M., Van Boxtel, G.J.M.: The time-course of alpha neurofeedback training effects in healthy participants. Biol. Psychol. 95(1), 70–73 (2014).  https://doi.org/10.1016/j.biopsycho.2013.11.014CrossRefGoogle Scholar
  70. 70.
    Enriquez-Geppert, S., Huster, R.J., Herrmann, C.S.: Boosting brain functions: improving executive functions with behavioral training, neurostimulation, and neurofeedback. Int. J. Psychophysiol. 88(1), 1–16 (2013).  https://doi.org/10.1016/j.ijpsycho.2013.02.001CrossRefGoogle Scholar
  71. 71.
    Witte, M., Kober, S.E., Ninaus, M., Neuper, C., Wood, G.: Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 7, 8 (2013).  https://doi.org/10.3389/fnhum.2013.00478CrossRefGoogle Scholar
  72. 72.
    Polich, J.: Normal variation of P300 from auditory stimuli. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials 65(3), 236–240 (1986).  https://doi.org/10.1016/0168-5597(86)90059-6CrossRefGoogle Scholar
  73. 73.
    Conroy, M.A., Polich, J.: Normative variation of P3a and P3b from a large sample: gender, topography, and response time. J. Psychophysiol. 21(1), 22–32 (2007).  https://doi.org/10.1027/0269-8803.21.1.22CrossRefGoogle Scholar
  74. 74.
    Allison, B.Z., Neuper, C.: Could anyone use a BCI? In: Tan, D., Nijholt, A. (eds.) Brain-Computer Interfaces, pp. 35–54 (2010).  https://doi.org/10.1007/978-1-84996-272-8
  75. 75.
    Kober, S.E., Witte, M., Ninaus, M., Neuper, C., Wood, G.: Learning to modulate one’s own brain activity: the effect of spontaneous mental strategies. Fron. Hum. Neurosci. 7, 1–12 (2013).  https://doi.org/10.3389/fnhum.2013.00695Google Scholar
  76. 76.
    Hardman, E., Gruzelier, J., Cheesman, K., Jones, C., Liddiard, D., Schleichert, H., Birbaumer, N.: Frontal interhemispheric asymmetry: self regulation and individual differences in humans. Neurosci. Lett. 221(2–3), 117–120 (1997).  https://doi.org/10.1016/S0304-3940(96)13303-6CrossRefGoogle Scholar
  77. 77.
    Roberts, L.E., Birbaumer, N., Rockstroh, B., Lutzenberger, W., Elbert, T.: Self-report during feedback regulation of slow cortical potentials. Psychophysiology 26(4), 392–403 (1989).  https://doi.org/10.1111/j.1469-8986.1989.tb01941.xCrossRefGoogle Scholar
  78. 78.
    Daum, I., Rockstroh, B., Birbaumer, N., Elbert, T., Canavan, A., Lutzenberger, W.: Behavioural treatment of slow cortical potentials in intractable epilepsy: neuropsychological predictors of outcome. J. Neurol. Neurosurg. Psychiatry 56(1), 94–97 (1993).  https://doi.org/10.1136/jnnp.56.1.94CrossRefGoogle Scholar
  79. 79.
    Wangler, S., Gevensleben, H., Albrecht, B., Studer, P., Rothenberger, A., Moll, G.H., Heinrich, H.: Neurofeedback in children with ADHD: specific event-related potential findings of a randomized controlled trial. Clin. Neurophysiol. (official journal of the International Federation of Clinical Neurophysiology) 122(5), 942–950 (2011).  https://doi.org/10.1016/j.clinph.2010.06.036CrossRefGoogle Scholar
  80. 80.
    Nijboer, F., Furdea, A., Gunst, I., Mellinger, J., McFarland, D.J., Birbaumer, N., Kübler, A.: An auditory brain-computer interface (BCI). J. Neurosci. Meth. 167(1), 43–50 (2008).  https://doi.org/10.1016/j.jneumeth.2007.02.009CrossRefGoogle Scholar
  81. 81.
    Mathiak, K.A., Alawi, E.M., Koush, Y., Dyck, M., Cordes, J.S., Gaber, T.J., et al.: Social reward improves the voluntary control over localized brain activity in fMRI-based neurofeedback training. Front. Behav. Neurosci. 9, 136 (2015).  https://doi.org/10.3389/fnbeh.2015.00136CrossRefGoogle Scholar
  82. 82.
    Gray, J.A.: The neuropsychology of temperament. In: Strelau. J. (ed.) Explorations in Temperament: International Perspectives on Theory and Measurement, pp. 105–128. Plenum Press, London (1991).  https://doi.org/10.1007/978-1-4899-0643-4_8
  83. 83.
    Gray, J.A.: Framework for a taxonomy of psychiatric disorder. In: Van Goozen, S.H.M., van de Poll, N.E., Sergeant, J.A. (eds.) Emotions: Essays on Emotion Theory, pp. 29–59. Lawrance Erlbaum, Hove (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rafał Łukasz Szewczyk
    • 1
  • Marta Ratomska
    • 2
  • Marta Jaśkiewicz
    • 2
  1. 1.Department of Cognitive PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
  2. 2.Department of Experimental PsychologyThe John Paul II Catholic University of LublinLublinPoland

Personalised recommendations