Towards Semantic Knowledge Base Definition

  • Marek Krótkiewicz
  • Krystian Wojtkiewicz
  • Marcin Jodłowiec
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)


The paper is a wide survey over one of the knowledge representation and processing solutions, namely knowledge bases. Due to current terminological inconsistency authors propose the complex definition of knowledge base in the field of knowledge representation. The overview of the most common reality description methods is provided in order to discuss its usefulness in knowledge base design. Authors not only give the definition of the knowledge base but also prove its completeness on the example of Semantic Knowledge Base project. The project aims at developing the general domain knowledge base using ontology base and semantic networks as basic knowledge representation methods.


Knowledge representation Knowledge base Ontology Semantic network 


  1. 1.
    Aagesen, G., Krogstie, J.: BPMN 2.0 for modeling business processes. In: Handbook on Business Process Management 1, pp. 219–250. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Barnes, W.H.F.: The doctrine of connotation and denotation. Mind 54, 254–263 (1945)CrossRefGoogle Scholar
  3. 3.
    Brown, M.S.: Theaetetus: knowledge as continued learning. J. Hist. Philos. 7(4), 359–379 (1969)CrossRefGoogle Scholar
  4. 4.
    Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8(2), 240–247 (1969)CrossRefGoogle Scholar
  5. 5.
    Dudycz, H.: Approach to the conceptualization of an ontology of an early warning system. In: Information Systems in Management XI, Data Bases, Distant Learning, and Web Solutions Technologies, pp. 29–39 (2011)Google Scholar
  6. 6.
    Duhl, J., Damon, C.: A performance comparison of object and relational databases using the sun benchmark. In: ACM SIGPLAN Notices, vol. 23, pp. 153–163. ACM (1988)Google Scholar
  7. 7.
    Feng, S., Bose, R., Choi, Y.: Learning general connotation of words using graph-based algorithms. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1092–1103. Association for Computational Linguistics (2011)Google Scholar
  8. 8.
    French, R.M.: The chinese room: Just say “no!” In: Proceedings of the Cognitive Science Society, vol. 1 (2000)Google Scholar
  9. 9.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  10. 10.
    Hao, C.: Research on knowledge model for ontology-based knowledge base. In: 2011 International Conference on Business Computing and Global Informatization (BCGIN), pp. 397–399. IEEE (2011)Google Scholar
  11. 11.
    Hendrix, G.G.: Encoding knowledge in partitioned networks. In: Associative Networks: Representation and Use of Knowledge by Computers, pp. 51–92 (1979)Google Scholar
  12. 12.
    Joyce, D.: An identification and investigation of software design guidelines for using encapsulation units. J. Syst. Softw. 7(4), 287–295 (1987)CrossRefGoogle Scholar
  13. 13.
    Kalantari, R., Bryant, C.: Comparing the performance of object and object relational database systems on objects of varying complexity. In: Data Security and Security Data, pp. 72–83 (2012)Google Scholar
  14. 14.
    Korzynska, A., Zdunczuk, M.: Clustering as a method of image simplification. Inf. Technol. Biomed. 47, 345 (2008)CrossRefGoogle Scholar
  15. 15.
    Krótkiewicz, M.: Asocjacyjny metamodel baz danych. Definicja formalna oraz analiza porównawcza metamodeli baz danych (eng. Association-Oriented Database Metamodel). No. z. 444 in Studia i Monografie, Oficyna Wydawnicza Politechniki Opolskiej, Opole (2016)Google Scholar
  16. 16.
    Krótkiewicz, M.: Association-oriented database model - n-ary associations. Int. J. Softw. Eng. Knowl. Eng. 27, 281 (2017)CrossRefGoogle Scholar
  17. 17.
    Krótkiewicz, M., Wojtkiewicz, K., Jodłowiec, M., Pokuta, W.: Semantic knowledge base: quantiers and multiplicity in extended semantic networks module. In: Knowledge Engineering and Semantic Web: 7th International Conference, KESW 2016, Prague, Czech Republic, 21–23 September 2016, Proceedings. Springer, Cham (2016)Google Scholar
  18. 18.
    Lange, K.J.: Complexity and structure in formal language theory. Fundam. Inf. 25(3, 4), 327–352 (1996)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lin, K.J.: Consistency issues in real-time database systems. In: Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, 1989. Vol. II: Software Track, vol. 2, pp. 654–661. IEEE (1989)Google Scholar
  20. 20.
    Macewen, G.H., Martin, T.P.: Abstraction hierarchies in top-down design. J. Syst. Softw. 2(3), 213–224 (1981)CrossRefGoogle Scholar
  21. 21.
    OMG: Unified Modeling Language\(^{\rm TM}\) (UML®) Version 2.5 (2013).
  22. 22.
    Przepiórkowski, A.: Slavonic information extraction and partial parsing. In: Proceedings of the Workshop on Balto-Slavonic Natural Language Processing: Information Extraction and Enabling Technologies, pp. 1–10. Association for Computational Linguistics (2007)Google Scholar
  23. 23.
    Przepiórkowski, A., Górski, R.L., Lewandowska-Tomaszyk, B., Lazinski, M.: Towards the national corpus of polish. In: LREC (2008)Google Scholar
  24. 24.
    Przepiórkowski, A., Marcińczuk, M., Degórski, Ł.: Dealing with small, noisy and imbalanced data. In: Text, Speech and Dialogue, pp. 169–176. Springer, Heidelberg (2008)Google Scholar
  25. 25.
    Schärli, N., Black, A.P., Ducasse, S.: Object-oriented encapsulation for dynamically typed languages. In: ACM SIGPLAN Notices, vol. 39, pp. 130–149. ACM (2004)Google Scholar
  26. 26.
    Seligman, L.J., Kerschberg, L.: Knowledge-base/database consistency in a federated multidatabase environment. In: Proceedings of the Third International Workshop on Research Issues in Data Engineering: Interoperability in Multidatabase Systems, RIDE-IMS 1993, pp. 18–25. IEEE (1993)Google Scholar
  27. 27.
    Soutou, C.: Modeling relationships in object-relational databases. Data Knowl. Eng. 36(1), 79–107 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Stroustrup, B.: What is object-oriented programming? IEEE Softw. 5(3), 10–20 (1988)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Su, H., Bouridane, A., Crookes, D.: Scale adaptive complexity measure of 2D shapes. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 2, pp. 134–137. IEEE (2006)Google Scholar
  30. 30.
    Voigt, J., Irwin, W., Churcher, N.: Class encapsulation and object encapsulation: an empirical study (2010)Google Scholar
  31. 31.
    Wislicki, J., Kuliberda, K., Adamus, R., Subieta, K.: Relational to object-oriented database wrapper solution in the data grid architecture with query optimisation issues. Int. J. Bus. Process Integ. Manag. 2(1), 17–25 (2007)CrossRefGoogle Scholar
  32. 32.
    Zhangbing, L., Wujiang, C.: A new algorithm for data consistency based on primary copy data queue control in distributed database. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 207–210. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Information SystemsWroclaw University of Science and TechnologyWrocławPoland
  2. 2.Institute of Computer ScienceOpole University of TechnologyOpolePoland
  3. 3.Institute of Control EnigneeringOpole University of TechnologyOpolePoland

Personalised recommendations