Meta-structural Graph-Based Design Patterns for Knowledge Representation in Association-Oriented Database Metamodel

  • Marcin Jodłowiec
  • Marek Krótkiewicz
  • Krystian Wojtkiewicz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)


This paper describes the problems of modeling graph-based structures in Association-Oriented Database Metamodel in the context of knowledge representation system. The basics of Association-Oriented Metamodel solutions, principles of modeling and sample implementations of graph structures have been presented, including labeled graphs as well as generalization of graphs, i.e. hypergraphs. Subsequently, metastructural ontological design patterns dedicated to knowledge representation systems are presented based on example of standard class-instance-feature-value and relationship patterns.


  1. 1.
    Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8, 240–247 (1969)CrossRefGoogle Scholar
  2. 2.
    Corcho, O., Gómez-Pérez, A.: A roadmap to ontology specification languages. In: International Conference on Knowledge Engineering and Knowledge Management, pp. 80–96 (2000).
  3. 3.
    Dipert, R.R.: The mathematical structure of the world: the world as graph. J. Philos. 94(7), 329–358 (1997)MathSciNetGoogle Scholar
  4. 4.
    Djedidi, R., Aufaure, M.A.: Ontology evolution: state of the art and future directions. In: Ontology Theory, Management and Design: Advanced Tools and Models, p. 179 (2010)Google Scholar
  5. 5.
    Fikes, R., Karp, P.D., Rice, J.P.: OKBC: a programmatic foundation for knowledge base interoperability. In: Proceedings of the National Conference on Artificial Intelligence, pp. 600–607 (1998).
  6. 6.
    Foxvog, D.: Cyc. In: Theory and Applications of Ontology: Computer Applications, pp. 259–278 (2010)Google Scholar
  7. 7.
    Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format, Version 3.0 Reference Manual. Interchange (Logic-92-1), pp. 1–68 (1992).
  8. 8.
    Hoang, D.T.A., Priebe, T., Tjoa, A.M.: Hypergraph-based multidimensional data modeling towards on-demand business analysis. In: Proceedings of the 13th International Conference on Information Integration and Web-Based Applications and Services, pp. 36–43. ACM (2011)Google Scholar
  9. 9.
    Jodłowiec, M., Krótkiewicz, M.: Semantics discovering in relational databases by pattern-based mapping to association-oriented metamodel – a biomedical case study. In: Advances in Intelligent and Soft Computing. Springer, Cham (2016)Google Scholar
  10. 10.
    Krótkiewicz, M.: Association-oriented database model – n-ary associations. Int. J. Softw. Eng. Knowl. Eng. 27, 281 (2017)CrossRefGoogle Scholar
  11. 11.
    Krótkiewicz, M., Wojtkiewicz, K.: An introduction to ontology based structured knowledge base system: knowledge acquisition module. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNAI, vol. 7802, pp. 497–506 (2013)Google Scholar
  12. 12.
    Krótkiewicz, M., Wojtkiewicz, K., Jodłowiec, M., Pokuta, W.: Semantic knowledge base: quantifiers and multiplicity in extended semantic networks module, pp. 173–187. Springer, Cham (2016)Google Scholar
  13. 13.
    Liu, J.N.K., He, Y.L., Lim, E.H.Y., Wang, X.Z.: A new method for knowledge and information management domain ontology graph model. IEEE Trans. Syst. Man Cybern. Syst. 43(1), 115–127 (2013)CrossRefGoogle Scholar
  14. 14.
    Pancerz, K.: Some remarks on complex information systems over ontological graphs, pp. 377–384. Springer, Cham (2014)Google Scholar
  15. 15.
    Portmann, E., Kaltenrieder, P., Pedrycz, W.: Knowledge representation through graphs. Procedia Comput. Sci. 62, 245–248 (2015)CrossRefGoogle Scholar
  16. 16.
    Scioni, E., Hübel, N., Blumenthal, S., Shakhimardanov, A., Klotzbücher, M., Garcia, H., Bruyninckx, H.: Hierarchical hypergraphs for knowledge-centric robot systems: a composable structural meta model and its domain specific language NPC4. J. Softw. Eng. Robot. 7, 55–74 (2016)Google Scholar
  17. 17.
    Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intell. Syst. 21, 96–101 (2006)CrossRefGoogle Scholar
  18. 18.
    Sowa, J.F.: Conceptual graphs for a data base interface. IBM J. Res. Dev. 20(4), 336–357 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sowa, J.F.: Conceptual graphs. Found. Artif. Intell. 3, 213–237 (2008). (Findler 1979)Google Scholar
  20. 20.
    Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012), pp. 3679–3686 (2012)Google Scholar
  21. 21.
    Trinkunas, J., Vasilecas, O.: A graph oriented model for ontology transformation into conceptual data model. Inf. Technol. Control 36(1), 126–132 (2007)Google Scholar
  22. 22.
    Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked open vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web. Semant. Web 8(3), 437–452 (2016). Scholar
  23. 23.
    Welty, C.: Ontology research. AI Mag. 24(3), 11–12 (2003). Scholar
  24. 24.
    Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems, vol. 19, pp. 1601–1608 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Computer Science and ManagementWroclaw University of TechnologyWroclawPoland
  2. 2.Institute of Control EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations