Advertisement

Concept of Brain-Controlled Exoskeleton Based on Motion Tracking and EEG Signals Analysis

  • Andrzej Olczak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)

Abstract

The article describes the possibilities of motion tracking and electroencephalography as the methods through creating a new type of powered exoskeleton control system. Modern motion tracking methods for three-dimensional space were presented with their advantages and disadvantages. Brain-computer interface was introduced as a possible control system for the robotic exoskeleton. Combined data model was proposed as the hypothetical solution based on electroencephalographic signals for the steering method.

Keywords

Motion tracking Brain-computer interface Powered exoskeleton Control system Electroencephalography Electromyography 

References

  1. 1.
    Welch, G., Foxlin, E.: Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22(6), 24–38 (2002)CrossRefGoogle Scholar
  2. 2.
    Vallabhaneni, A., Wang, T., He, B.: Brain-Computer Interface. Neural Engineering, Bioelectric Engineering, pp. 85–121. Springer, Boston (2005)Google Scholar
  3. 3.
    Hong, Y.W., King, Y., Yeo, W., Ting, C., Chuah, Y., Lee, J., Chok, E.T.: Lower extremity exoskeleton: review and challenges surrounding the technology and its role in rehabilitation of lower limbs. Aust. J. Basic Appl. Sci. 7(7), 520–524 (2013)Google Scholar
  4. 4.
    Schall, G., Wagner, D., Reitmayr, G., Taichmann, E., Wieser, M., Schmalstieg, D., Hofmann-Wellenhof, B.: Global pose estimation using multi-sensor fusion for outdoor augmented reality. In: 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, pp. 153–162 (2009)Google Scholar
  5. 5.
    Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors, Xsens Motion Technol. BV Technical report, vol. 3 (2009)Google Scholar
  6. 6.
    Online XSens Technologies B.V. Site (2017). https://www.xsens.com/productions-powered-xsens
  7. 7.
  8. 8.
    Alhwarin, F., Ferrein, A., Scholl, I.: IR stereo kinect: improving depth images by combining structured light with IR Stereo. In: PRICAI 2014: Trends in Artificial Intelligence: 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, QLD, Australia, pp. 409–421. Springer (2014)Google Scholar
  9. 9.
    Maimone, A., Fuchs, H.: Encumbrance-free tele-presence system with real-time 3D capture and display using commodity depth cameras. In: 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 137–146 (2011)Google Scholar
  10. 10.
    Online Leap Motion Inc., Site, Alex Colgan, How Does the Leap Motion Controller Work (2017). http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work
  11. 11.
    Online Microsoft Developer Network Site, Kinect for Windows Sensor Components and Specifications (2017). https://msdn.microsoft.com/en-us/library/jj131033.aspx
  12. 12.
    Online Google Project Soli Site (2017). https://atap.google.com/soli
  13. 13.
    Online Tesla Inc., Web Site, Upgrading Autopilot: Seeing the World in Radar (2016). https://www.tesla.com/en_EU/blog/upgrading-autopilot-seeing-world-radar?redirect=no
  14. 14.
    Ebrahimi, T., Vesin, J.-M., Garcia-Molina, G.: Brain-computer interface in multimedia communication. IEEE Sig. Process. Mag. 20, 14–24 (2003)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Konrad P.: ABC EMG – Praktyczne wprowadzenie do elektromiografii kinezjologicznej, Technomex Sp. z o.o. (2007). ISBN 83-920818-1-1Google Scholar
  17. 17.
    Castellini, C., Hornung, R., Vogel, J., Urbanek, H.: Bio-data exploitation for supportive robotics, Online Deutsches Zentrum für Luft- und Raumfahrt Site, Institute of Robotics and Mechatronics (2017). http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-9277/15984_read-39321/
  18. 18.
    Online LiveScience Site, Tanya Lewis, Staff Writer: World Cup Exoskeleton Demo: Hope or Hype? (2014). https://www.livescience.com/46285-world-cup-exoskeleton-demo.html
  19. 19.
    Kwak, N.-S., Müller, K.-R., Lee, S.-W.: A lower limb exoskeleton control system based on steady state visual evoked potentials. J. Neural Eng. 12(5), 056009 (2015)CrossRefGoogle Scholar
  20. 20.
    Brewster, S.: This $40,000 Robotic Exoskeleton Lets the Paralyzed Walk, Online MIT Technology Review Site (2016). https://www.technologyreview.com/s/546276/this-40000-robotic-exoskeleton-lets-the-paralyzed-walk/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Automatic Control and Informatics, Institute of Computer ScienceOpole University of TechnologyOpolePoland

Personalised recommendations