Advertisement

Effect of Spatial Filtering on Object Detection with the SURF Algorithm

  • Michał Tomaszewski
  • Jakub Osuchowski
  • Łukasz Debita
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)

Abstract

The article presents a preliminary study into the detection of electrical insulators in digital images aquired during a power line inspection. Due to the enormous amount of digital data generated during a high voltage lines inspection, there is a need to automate the detection process of power insulators in digital images. As part of the study, the effects of applying spatial filtering into digital images for the purpose of the identification of electrical insulators with the use of a local feature detector and descriptor SURF (Speeded Up Robust Features) were analyzed. The recognition and designation of an insulator’s ROI (Region Of Interest) in a digital image will allow the application of more advanced methods aimed at the identification of possible damages in further stages of the analysis.

Keywords

Spatial filtering SURF algorithm Object detection Electrical insulator 

References

  1. 1.
    Zator, S., Michalski, P., Lasar, M.: Linking chromatic images with spatial data. In: PAK, vol. 11, pp. 962–964 (2012)Google Scholar
  2. 2.
    Zator, S., Michalski, P.: Pomiar zmian topologii obiektów na podstawie wyznaczania parametrów położenia markerów. In: PAK, vol. 12, pp. 1480–1482 (2011)Google Scholar
  3. 3.
    Tomaszewski, M., Krawiec, M.: Detection of linear objects based on computer vision and Hough transform. Przeglad Elektrotechniczny (Electrical Review), vol. 88 10b (2012)Google Scholar
  4. 4.
    Osuchowski, J.: Insulator detection based on hog features descriptor. Przeglad Naukowo-Metodyczny Edukacja dla Bezpieczeństwa, vol. 34, pp. 1176–1186 (2017)Google Scholar
  5. 5.
    Zator, S., Gasz, R.: A analysis of the geometry HV power line uploaded with used high resolution images. In: PPM, pp. 127–130 (2014)Google Scholar
  6. 6.
    Holtzhausen, J.: High voltage insulators. Electr. Eng. 53(11) (1994)Google Scholar
  7. 7.
    Anjum, S.: A Study of the Detection of Defects in Ceramic Insulators Based on Radio Frequency Signatures. University of Waterloo (2014)Google Scholar
  8. 8.
    Cotton, H., Barber, H.: The Transmission and Distribution of Electrical Energy Paperback. Hodder Arnold, London (1970)Google Scholar
  9. 9.
    Han, S., Hao, R., Lee, J.: Inspection of insulators on high-voltage power transmission lines. IEEE Trans. Power Del. 24(4), 2319–2327 (2009)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Lee, J., Park, J., Cho, B., Oh, K.: Development of inspection tool for live-line insulator strings in 154kV power transmission lines keywords power transmission lines keywords. In: Power, vol. 7, no. 1 (2007)Google Scholar
  12. 12.
    Oberweger, M., Wendel, A., Bischof, H.: Visual recognition and fault detection for power line insulators. In: Computer Vision Winter Workshop (2014)Google Scholar
  13. 13.
    Wang, X., Zhang, Y.: Insulator identification from aerial images using support vector machine with background suppression. In: ICUAS (2016)Google Scholar
  14. 14.
    Chojnacki, A.: Analysis of reliability of selected devices in MV/LV substations (2011)Google Scholar
  15. 15.
    Bretuj, W., Fleszy, J., Wieczorek, K.: Diagnostyka izolatorów kompozytowych eksploatowanych w liniach elektroenergetycznych. Przeglad Elektrotechniczny (Electrical Review), vol. 5a, no. 5 (2012)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Tadeusiewicz, R., Korohoda, P.: Komputerowa analiza i przetwarzanie obrazów. Wydawnictwo Fundacji Postȩpu Telekomunikacji, Kraków (1997)Google Scholar
  19. 19.
    IMAQ Image Processing Manual, National Instruments Corporation (1999)Google Scholar
  20. 20.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: ECCV, vol. 3951 (2006)Google Scholar
  21. 21.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: ICCV, vol. 1, pp. 525–531 (2001)Google Scholar
  22. 22.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2 (1999)Google Scholar
  23. 23.
    Zhao, Z., Liu, N.: The recognition and localization of insulators adopting SURF and IFS based on correlation coefficient. Optik 125, 6049–6052 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Automatic Control and Informatics, Institute of Computer ScienceOpole University of TechnologyOpolePoland

Personalised recommendations