Virtual Reality Based Simulators for Neurosurgeons - What We Have and What We Hope to Have in the Nearest Future

  • Dariusz Latka
  • Marek Waligora
  • Kajetan Latka
  • Grzegorz Miekisiak
  • Michal Adamski
  • Klaudia Kozlowska
  • Miroslaw Latka
  • Katarzyna Fojcik
  • Dariusz Man
  • Ryszard Olchawa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)

Abstract

High levels of manual skills, good visual-motor coordination, excellent imagination and spatial awareness are the main factors determining the success of neurosurgeons. Proficiency in neurosurgical skills used to be acquired through hands-on training in cadaver labs and in real operating theatres under master neurosurgeon supervision. Most recently, virtual reality (VR) and augmented reality (AR) computer simulations have also been considered as tools for education in the neurosurgical training. The authors review existing solutions and present their own concept of a simulator which could become the useful tool for planning, simulation and training of a specific neurosurgical procedure using patient’s imaging data. The benefits of simulator are particularly apparent in the context of neurovascular operations. It is the field in which it is very difficult for young neurosurgeons to gain proficiency because of the lack of experience caused by the competition between microsurgery and endovascular techniques.

Keywords

Virtual reality Medical training Neurosurgical simulator 

References

  1. 1.
    Alaraj, A., Charbel, F.T., Birk, D., Tobin, M., Luciano, C., Banerjee, P.P., Rizzi, S., Sorenson, J., Foley, K., Slavin, K., Roitberg, B.: Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery 72(1), 115–123 (2013).  https://doi.org/10.1227/neu.0b013e3182753093CrossRefGoogle Scholar
  2. 2.
    Alaraj, A., Luciano, C.J., Bailey, D.P., Elsenousi, A., Roitberg, B.Z., Bernardo, A., Banerjee, P.P.: Charbel FT: virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 2, 52–58 (2015).  https://doi.org/10.1227/neu.0000000000000583Google Scholar
  3. 3.
    Alotaibi, F.E., AlZhrani, G.A., Mullah, M.A., Sabbagh, A.J., Azarnoush, H., Winkler-Schwartz, A., Del Maestro, R.F.: Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery 11(Suppl 2), 89–98 (2015).  https://doi.org/10.1227/neu.0000000000000631. discussion 98Google Scholar
  4. 4.
    Alotaibi, F.E., AlZhrani, G.A., Sabbagh, A.J., Azarnoush, H., Winkler-Schwartz, A., Del Maestro, R.F.: Neurosurgical assessment of metrics including judgment and dexterity using the virtual reality simulator NeuroTouch (NAJD metrics). Surg. Innov. 22(6), 636–642 (2015).  https://doi.org/10.1177/1553350615579729CrossRefGoogle Scholar
  5. 5.
    AlZhrani, G., Alotaibi, F., Azarnoush, H., Winkler-Schwartz, A., Sabbagh, A., Bajunaid, K., Lajoie, S.P., Del Maestro, R.F.: Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch. J Surg. Educ. 72(4), 685–696 (2015).  https://doi.org/10.1016/j.jsurg.2014.12.014CrossRefGoogle Scholar
  6. 6.
    Azarnoush, H., Alzhrani, G., Winkler-Schwartz, A., Alotaibi, F., Gelinas-Phaneuf, N., Pazos, V., Choudhury, N., Fares, J., DiRaddom, R., Del Maestro, R.F.: Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection. Int. J. Comput. Assist. Radiol. Surg. 10(5), 603–618 (2015).  https://doi.org/10.1007/s11548-014-1091-zCrossRefGoogle Scholar
  7. 7.
    Banerjee, P.P., Luciano, C.J., Lemole Jr., G.M., Charbel, F.T., Oh, M.Y.: Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback. J. Neurosurg. 107(3), 515–521 (2007)CrossRefGoogle Scholar
  8. 8.
    Bekelis, K., Gottlieb, D.J., Su, Y., O’Malley, A.J., Labropoulos, N., Goodney, P., Lawton, M.T., MacKenzie, T.A.: Comparison of clipping and coiling in elderly patients with unruptured cerebral aneurysms. J. Neurosurg. 126(3), 811–818 (2017).  https://doi.org/10.3171/2016.1.JNS152028CrossRefGoogle Scholar
  9. 9.
    Clark, A.D., Barone, D.G., Candy, N., Guilfoyle, M., Budohoski, K., Hofmann, R., Santarius, T., Kirollos, R., Trivedi, R.A.: The effect of 3-dimensional simulation on neurosurgical skill acquisition and surgical performance: a review of the literature. J. Surg. Educ. 22(16) (2017).  https://doi.org/10.1016/j.jsurg.2017.02.007. S1931–7204, 30316-6 (Epub ahead of print)
  10. 10.
    Gasco, J., Holbrook, T.J., Patel, A., Smith, A., Paulson, D., Muns, A., Desai, S., Moisi, M., Kuo, Y.F., Macdonald, B., Ortega-Barnett, J., Patterson, J.T.: Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery 73(Suppl 1), 39–45 (2013).  https://doi.org/10.1227/NEU.0000000000000102CrossRefGoogle Scholar
  11. 11.
    Konakondla, S., Fong, R., Schirmer, C.M.: Simulation training in neurosurgery: advances in education and practice. Adv. Med. Educ. Pract. 14(8), 465–473 (2017).  https://doi.org/10.2147/AMEP.S113565CrossRefGoogle Scholar
  12. 12.
    Korja, M., Kivisaari, R., RezaiJahromi, B., Lehto, H.: Size and location of ruptured intracranial aneurysms: consecutive series of 1993 hospital-admitted patients. J. Neurosurg. 2, 1–6 (2016).  https://doi.org/10.3171/2016.9.JNS161085Google Scholar
  13. 13.
    Krähenbühl, S.M., Čvančara, P., Stieglitz, T., Bonvin, R., Michetti, M., Flahaut, M., Durand, S., Deghayli, L., Applegate, L.A., Raffoul, W.: Return of the cadaver: key role of anatomic dissection for plastic surgery resident training. Medicine (Baltimore) 96(29), e7528 (2017).  https://doi.org/10.1097/MD.0000000000007528CrossRefGoogle Scholar
  14. 14.
    Luciano, C.J., Banerjee, P.P., Bellotte, B., Oh, G.M., Lemole Jr., M., Charbel, F.T., Roitberg, B.: Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery 69(Suppl Operative 1), 14–19 (2011).  https://doi.org/10.1227/neu.0b013e31821954edGoogle Scholar
  15. 15.
    Mashiko, T., Kaneko, N., Konno, T., Otani, K., Nagayama, R., Watanabe, E.: Training in cerebral aneurysm clipping using self-made 3-dimensional models. J. Surg. Educ. 74(4), 681–689 (2017).  https://doi.org/10.1016/j.jsurg.2016.12.010CrossRefGoogle Scholar
  16. 16.
    Molyneux, A.J., Kerr, R.S., Yu, L.M., Clarke, M., Sneade, M., Yarnold, J.A., Sandercock, P.: International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366(9488), 809–817 (2005)CrossRefGoogle Scholar
  17. 17.
    Mundschenk, M.B., Odom, E.B., Ghosh, T.D., Kleiber, G.M., Yee, A., Patel, K.B., Mackinnon, S.E., Tenenbaum, M.M., Buck II, D.W.: Are residents prepared for surgical cases? Implications in patient safety and education. J. Surg. Educ. 18 (2017).  https://doi.org/10.1016/j.jsurg.2017.07.001. S1931-7204
  18. 18.
    Pfandler, M., Lazarovici, M., Stefan, P., Wucherer, P., Weigl, M.: Virtual reality based simulators for spine surgery: a systematic review. Spine J. 17 (2017).  https://doi.org/10.1016/j.spinee.2017.05.016. S1529-9430, 30208-5. (Epub ahead of print)
  19. 19.
    Steklacova, A., Bradac, O., Charvat, F., De Lacy, P., Benes, V.: “Clip first” policy in the management of intracranial MCA aneurysms: Single-centre experience with a systematic review of the literature. Acta Neurochir. (Wien) 158(3), 533–546 (2016).  https://doi.org/10.1007/s00701-015-2687-y. discussion 546CrossRefGoogle Scholar
  20. 20.
    Wang, L., Ye, X., Hao, Q., Chen, Y., Chen, X., Wang, H., Wang, R., Zhao, Y., Zhao, J.: Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg. 103, 671–679 (2017).  https://doi.org/10.1016/j.wneu.2017.04.098CrossRefGoogle Scholar
  21. 21.
    Winkler-Schwartz, A., Bajunaid, K., Mullah, M.A., Marwa, I., Alotaibi, F.E., Fares, J., Baggiani, M., Azarnoush, H., Zharni, G.A., Christie, S., Sabbagh, A.J., Werthner, P., Del Maestro, R.F.: Bimanual psychomotor performance in neurosurgical resident applicants assessed using neurotouch, a virtual reality simulator. J. Surg. Educ. 73(6), 942–953 (2016).  https://doi.org/10.1016/j.jsurg.2016.04.013CrossRefGoogle Scholar
  22. 22.
    Xu, W., Zhang, X., Ke, T., Cai, H., Gao, X.: 3D printing-assisted preoperative plan of pedicle screw placement for middle-upper thoracic trauma: a cohort study. BMC Musculoskelet Disord. 18(1), 348 (2017).  https://doi.org/10.1186/s12891-017-1703-1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dariusz Latka
    • 1
    • 2
  • Marek Waligora
    • 2
  • Kajetan Latka
    • 1
    • 2
    • 6
  • Grzegorz Miekisiak
    • 1
    • 5
  • Michal Adamski
    • 3
  • Klaudia Kozlowska
    • 3
  • Miroslaw Latka
    • 3
  • Katarzyna Fojcik
    • 3
  • Dariusz Man
    • 4
  • Ryszard Olchawa
    • 4
  1. 1.Department of NeurosurgeryUniversity Hospital in Opole, Opole UniversityOpolePoland
  2. 2.Center for Education and Development in Medicine Vital Medic EducationKluczborkPoland
  3. 3.Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclawPoland
  4. 4.Institute of PhysicsOpole UniversityOpolePoland
  5. 5.Department of NeurosurgeryRegional Medical CenterPolanica-ZdrojPoland
  6. 6.Specialist District Neurological CenterOpolePoland

Personalised recommendations