Skip to main content

Abstract

Since the half of the past century, attempts to locally treat intracranial neoplasms have grown. From pioneering interstitial seeds of various materials (radioactive, non-radioactive) with or without the application of ElectroMagnetic Field (EMF), recently new interest was elicited by the possibilities offered by the nanotechnologies. The blocking activity of the Blood-Brain Barrier (BBB) represents main problem for every treatment of brain neoplasms. Shortly, here we summarize some aspects of the blood-brain barrier problem in the perspective of more efficient therapeutic approaches, like the use of nanoparticle and their theranostic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Method that do not require an invasive surgical procedure or intracranial interventions

References

  1. Ehrlich, P.: Das Sauerstoffbedürfnis des Organismus. Eine Farbenanalytische Studie, pp. 69–72. Hirschwald, Berlin (1885)

    Google Scholar 

  2. Goldman, E.E.: Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte der vitalen Farbung. Beitr. Z. Klin. Chir. 64(192), 24 (1909)

    Google Scholar 

  3. Lewandowski, M.: Zur Lehre von der Cerebrospinalflüssigkeit. Z. Klin. Med. 40, 480–494 (1900)

    Google Scholar 

  4. Ribatti, D., Nico, B., Crivellato, E., Artico, M.: Development of the blood–brain barrier: a historical point of view. Anat. Rec. B New Anat. 289(1), 3–8 (2006)

    Article  Google Scholar 

  5. Friedemann, U.: Blood-brain barrier. Physiol. Rev. 22, 125–145 (1942)

    Article  Google Scholar 

  6. Dyrna, F., Hanske, S., Krueger, M., Bechmann, I.: The blood-brain barrier. J Neuroimmune Pharmacol. 8(4), 763–773 (2013)

    Article  Google Scholar 

  7. Obermeier, B., Daneman, R., Ransohoff, R.M.: Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013)

    Article  Google Scholar 

  8. Alyautdin, R., Khalin, I., Nafeeza, M.I., Haron, M.H., Kuznetsov, D.: Nanoscale drug delivery systems and the blood–brain barrier. Int. J. Nanomed. 9(1), 795–811 (2014)

    Google Scholar 

  9. Gabathuler, R.: Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57 (2010)

    Article  Google Scholar 

  10. Begley, D.J.: Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther. 104, 29–45 (2004)

    Article  Google Scholar 

  11. Cipolla, M.J.: Barriers of the CNS. In: Granger, D.N., Granger, J. (eds.) The Cerebral Circulation. Morgan & Claypool Life Sciences, San Rafael (CA) (2009)

    Google Scholar 

  12. Abbott, N.J., Patabendige, A., Dolman, D., Yusof, S.R., Begley, D.J.: Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010)

    Article  Google Scholar 

  13. Chodobski, A., Zink, B.J., Szmydynger-Chodobska, J.: Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. (2011)

    Google Scholar 

  14. Cipolla, M.J., Crete, R., Vitullo, L., Rix, R.D.: Transcellular transport as a mechanism of blood-brain barrier disruption during stroke. Front Biosci. 9, 777–785 (2004)

    Article  Google Scholar 

  15. Neuwelt, E.A., Bauer, B., Fahlke, C., Fricker, G., Iadecola, C., Janigro, D., Leybaert, L., Molnár, Z., O’Donnell, M.E., Povlishock, J.T., Saunders, N.R., Sharp, F., Stanimirovic, D., Watts, R.J., Drewes, L.R.: Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci. 12, 169–182 (2011)

    Google Scholar 

  16. Patching, S.G.: Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. (2016) [Epub ahead of print]

    Google Scholar 

  17. Zlokovic, B.V.: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2), 178–201 (2008)

    Article  Google Scholar 

  18. Watabe, M., Nagafuchi, A., Tsukita, S., Takeichi, M.J.: Induction of polarized cell–cell association and retardation of growth by activation of the E-cadherin–catenin adhesion system in a dispersed carcinoma line. Cell Biol. 127, 247–256 (1994)

    Article  Google Scholar 

  19. Wolburg, H., Noell, S., Mack, A., Wolburg-Buchholz, K., Fallier-Becker, P.: Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 335, 75–96 (2009)

    Article  Google Scholar 

  20. Farell, C.L., Pardridge, W.M.: Blood–brain-barrier glucose transporter is asymmetrically distributed on brain capillary endothelial luminal and abluminal membranes: an electronic microscopic immunogold study. Proc. Nat. Acad. Sci. U.S.A. 88, 5779–5783 (1999)

    Article  Google Scholar 

  21. Brightman, M.W., Reese, T.S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969)

    Article  Google Scholar 

  22. Correale, J., Villa, A.: Cellular elements of the blood–brain barrier. Neurochem. Res. 34, 2067–2077 (2009)

    Article  Google Scholar 

  23. Reese, T.S., Karnovsky, M.J.: Fine structural localization of a blood brain barrier to exogenous peroxidase. J. Cell. Biol. 34, 207–217 (1967)

    Article  Google Scholar 

  24. Saraiva, C., Praça, C., Ferreira, R., Santos, T., Ferreira, L., Bernardino, L.: Nanoparticle-mediated brain drug delivery: overcoming lood–brain barrier to treat neurodegenerative diseases. J. Control. Release 235, 34–47 (2016). ISSN 0168-3659

    Google Scholar 

  25. Hawkins, R.A., O’Kane, R.L., Simpson, I.A.: Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr. 136(1 Suppl), 218S–226S (2006)

    Article  Google Scholar 

  26. Borges-Walmsley, M.I., McKeegan, K.S., Walmsley, A.R.: Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376(Pt 2), 313–338 (2003)

    Article  Google Scholar 

  27. Daneman, R., Rescigno, M.: The gut immune barrier and the blood–brain barrier: are they so different? Immunity 31, 722–735 (2009)

    Article  Google Scholar 

  28. Khatri, R., McKinney, A.M., Swenson, B., Janardhan, V.: Blood–brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 79(13 Suppl 1), S52–57 (2012)

    Google Scholar 

  29. Lee, H., Pienaar, I.S.: Disruption of the blood–brain barrier in Parkinson’s disease: curse or route to a cure? Front. Biosci. (Landmark Ed.) 19, 272–280 (2014)

    Google Scholar 

  30. Luissint, A.C., Artus, C., Glacial, F., Ganeshamoorthy, K., Couraud, P.-O.: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9, 23 (2012)

    Google Scholar 

  31. Kyle, S., Saha, S.: Nanotechnology for the detection and therapy of stroke. Adv. Healthc. Mater. 3, 1703–1720 (2014)

    Google Scholar 

  32. da Fonseca, A.C.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C. et al.: The impact of microglial activation on blood–brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362 (2014)

    Google Scholar 

  33. Jiao, H., Wang, Z., Liu, Y., Wang, P., Xue, Y.: Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J. Mol. Neurosci. 44, 130–139 (2011)

    Article  Google Scholar 

  34. Yang, Y., Rosenberg, G.A.: Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42, 3323–3328 (2011)

    Article  Google Scholar 

  35. Zlokovic, B.V.: Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12(12), 723–738 (2011)

    Article  Google Scholar 

  36. Alzheimer’s Statistics (http://www.alzheimers.net/resources/alzheimers-statistics/)

  37. Deane, R., Yan, S.D., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., et al.: RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003)

    Article  Google Scholar 

  38. Kook, S.Y., Seok Hong, H., Moon, M., Mook-Jung, I.: Disruption of blood–brain barrier in Alzheimer disease pathogenesis. Tissue Barriers. 1(2), e23993 (2013)

    Google Scholar 

  39. European Parkinson’s disease Association (2016). http://www.epda.eu.com/en/resources/life-with-parkinsons/part-1/prevalence-of-parkinsons-disease/

  40. Doria, M., Maugest, L., Moreau, T., Lizard, G., Vejux, A.: Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson’s disease. Free Radic. Biol. Med. 101, 393–400 (2016)

    Article  Google Scholar 

  41. Fernandez, H.H.: Updates in the medical management of Parkinson disease. Cleve Clin. J. Med. 79, 28–35 (2012)

    Article  Google Scholar 

  42. Haussermann, P., Kuhn, W., Przuntek, H., Muller, T.: Integrity of the blood–cerebrospinal fluid barrier in early Parkinson’s disease. Neurosci. Lett. 300, 182–184 (2001)

    Article  Google Scholar 

  43. Kortekaas, R., Leenders, K.L., Van Oostrom, J.C.H., Vaalburg, W., Bart, J., Willemsen, A.T.M., et al.: Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005)

    Article  Google Scholar 

  44. Pisani, V., Stefani, A., Pierantozzi, M., Natoli, S., Stanzione, P., Franciotta, D., et al.: Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J. Neuroinflamm. 8(9), 188 (2012)

    Google Scholar 

  45. Gallego, O.: Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol. 22(4), e273–e281 (2015)

    Article  Google Scholar 

  46. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., Thun, M.J.: CA Cancer J. Clin. 56(2), 106–130 (2006)

    Google Scholar 

  47. Watkins, S., Robel, S., Kimbrough, I.F., Robert, S.M., Ellis-Davies, G., Sontheimer, H.: Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat. Commun. 19(5), 4196 (2014)

    Google Scholar 

  48. Winkler, F., Kienast, Y., Fuhrmann, M., Von Baumgarten, L., Burgold, S., Mitteregger, G., Kretzschmar, H., Herms, J.: Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57(12), 1306–1315 (2009)

    Article  Google Scholar 

  49. Humle, N., Johnsen, K.B., Arendt, G.A., Nielsen, R.P., Moos, T., Thomsen, L.B.: Targeted vascular drug delivery in cerebral cancer. Curr. Pharm. Des. 22(35), 5487–5504 (2016)

    Article  Google Scholar 

  50. Liu, H.L., Fan, C.H., Ting, C.Y., Yeh, C.K.: Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4(4), 432–444 (2014)

    Article  Google Scholar 

  51. Pardridge, W.M.: The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005)

    Article  Google Scholar 

  52. Caraglia, M., De Rosa, G., Salzano, G., Santini, D., Lamberti, M., Sperlongano, P., Lombardi, A., Abbruzzese, A., Addeo, R.: Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier. Curr. Cancer Drug Targets 12(3), 186–196 (2012)

    Article  Google Scholar 

  53. Trahan, M.A., Kahng, S., Fisher, A.B., Hausman, N.L.: Behavior-analytic research on dementia in older adults. J. Appl. Behav. Anal. 44, 687–691 (2011)

    Article  Google Scholar 

  54. Kroll, R.A., Pagel, M.A., Muldoon, L.L., Roman-Goldstein, S., Fiamengo, S.A., Neuwelt, E.A.: Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood–brain and/or blood-tumor barriers. Neurosurgery 43, 879–886 (1998)

    Article  Google Scholar 

  55. Polly, J.W., Olson, K.L., Chism, J.P.: Getting into the brain. approaches to enhance brain drug delivery. CNS Drug. 23, 35–58 (2009)

    Google Scholar 

  56. Rhaleb, N., Télémaque, S., Rouisson, N., et al.: Structure-activity studies of bradykinin and related peptides. B2-receptor antagonists. Hypertension 17, 107–115 (1991)

    Article  Google Scholar 

  57. Matsukado, K., Sugita, M.: Intracarotid low dose bradykinin infusion selectively increases tumor permeability through activation of bradykinin B2 receptors in malignant gliomas. Brain Res. 4, 10–15 (1998)

    Article  Google Scholar 

  58. Aryal, M., Vykhodtseva, N., Zhang, Y.Z., McDannold, N.: Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood–brain barrier disruption: a safety study. J. Control. Release 28(204), 60–69 (2015)

    Article  Google Scholar 

  59. Cho, C.W., Liu, Y., Cobb, W., et al.: Ultrasound induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells. Pharm. Res. 19(8), 1123–1129 (2002)

    Article  Google Scholar 

  60. Park, J., Aryal, M., Vykhodtseva, N., Zhang, Y.Z., McDannold, N.: Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J. Control. Release 2016 Oct 11. pii: S0168-3659(16)30955-5

    Google Scholar 

  61. Ding, G.R., Qiu, L.B., Wang, X.W., Li, K.C., Zhou, Y.C., Zhou, Y., Zhang, J., Zhou, J.X., Li, Y.R., Guo, G.Z.: EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Toxicol. Lett. 196(3), 154–160 (2010)

    Article  Google Scholar 

  62. Frey, A.H., Feld, S.R., Frey, B.: Neural function and behavior: defining the relationship. Ann. N. Y. Acad. Sci. 247, 433–439 (1975)

    Article  Google Scholar 

  63. Salford, L.G., Nittby, H., Brun, A., Grafström, G., Eberhardt, J.L., Malmgren, L., Persson, B.R.R.: Non-thermal effects of EMF upon the mammalian brain: the Lund experience. Environmentalist 27, 493–500 (2007)

    Article  Google Scholar 

  64. Amin, F.U., Hoshiar, A.K., Do, T.D., Noh, Y., Shah, S.A., Khan, M.S., Yoon, J., Kim, M.O.: Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 9(30), 10619–10632 (2017)

    Article  Google Scholar 

  65. Do, T.D., Ul Amin, F., Noh, Y., Kim, M.O., Yoon, J.: Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic targeted drug-delivery actuator. J. Biomed. Nanotechnol. 12(3), 569–574 (2016)

    Article  Google Scholar 

  66. Kuo, Y.C., Lu, C.H.: Modulation of efflux proteins by electromagnetic field for delivering azidothymidine and saquinavir into the brain. Colloids Surf. B Biointerfaces 1(91), 291–295 (2012)

    Article  Google Scholar 

  67. Qiu, L.B., Ding, G.R., Li, K.C., Wang, X.W., Zhou, Y., Zhou, Y.C., Li, Y.R., Guo, G.Z.: The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse. Toxicology 273(1–3), 29–34 (2010)

    Article  Google Scholar 

  68. Zhou, J.X., Ding, G.R., Zhang, J., Zhou, Y.C., Zhang, Y.J., Guo, G.Z.: Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood–brain-barrier model. Biomed. Environ. Sci. 26(2), 128–137 (2013)

    Google Scholar 

  69. Sirav, B., Seyhan, N.: Blood-brain barrier disruption by continuous-wave radio frequency radiation. Electromagn. Biol. Med. 28(2), 215–222 (2009)

    Article  Google Scholar 

  70. Hao, Y., Yang, X., Chen, C., Yuan-Wang, Wang, X., Li, M., Yu, Z.: STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Int. J. Radiat. Biol. 86(1), 27–36 (2010)

    Article  Google Scholar 

  71. Yang, L.L., Zhou, Y., Tian, W.D., Li, H.J., Li, K.-C., Miao, X., An, G.Z., Wang, X.W., Guo, G.Z., Ding, G.R.: Electromagnetic pulse activated brain microglia via the p38 MAPK pathway. Neurotoxicology 52, 144–149 (2016)

    Article  Google Scholar 

  72. Yang, X., He, G., Hao, Y., Chen, C., Li, M., Wang, Y., Zhang, G., Yu, Z.: The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. J. Neuroinflamm. 9(7), 54 (2010)

    Article  Google Scholar 

  73. Pavan, B., Dalpiaz, A., Ciliberti, N., Biondi, C., Manfredini, S., Vertuani, S.: Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 13(5), 1035–1065 (2008)

    Article  Google Scholar 

  74. Begley, D.J.: The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J. Pharm. Pharmacol. 4, 136–146 (1996)

    Article  Google Scholar 

  75. Denora, N., Trapani, A., Laquintana, V., Lopedota, A., Tropani, G.: Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain. Curr. Top. Med. Chem. 9, 182–196 (2009)

    Article  Google Scholar 

  76. Mäger, I., Meyer, A.H., Li, J., Lenter, M., Hildebrandt, T., Leparc, G., Wood, M.J.: Targeting blood-brain-barrier transcytosis—perspectives for drug delivery. Neuropharmacology. 2016 Aug 22. pii: S0028-3908(16)30361-6. https://doi.org/10.1016/j.neuropharm.2016.08.025 (Epub ahead of print)

  77. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 1283–1318 (2001)

    Google Scholar 

  78. Matsumura, Y., Maeda, H.: “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs”. Cancer Res. 46, 6387–6392 (1986)

    Google Scholar 

  79. Bruun, J., Larsen, T.B., Jølck, R.I., Eliasen, R., Holm, R., Gjetting, T., Andresen, T.L.: Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int. J. Nanomedicine. 24(10), 5995–6008 (2015)

    Google Scholar 

  80. Huang, S., Shao, K., Liu, Y., Kuang, Y., Li, J., An, S., Guo, Y., Ma, H., Jiang, C.: Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3), 2860–2871 (2013)

    Article  Google Scholar 

  81. Nakamura, Y., Mochida, A., Choyke, P.L., Kobayashi, H.: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27(10), 2225–2238 (2016)

    Article  Google Scholar 

  82. Vannucci, L., Falvo, E., Failla, C.M., Carbo, M., Fornara, M., Canese, R., Cecchetti, S., Rajsiglova, L., Stakheev, D., Krizan, J., Boffi, A., Carpinelli, G., Morea, V., Ceci, P.: In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. J. Biomed. Nanotechnol. 11(1), 81–92 (2015)

    Article  Google Scholar 

  83. Elzoghby, A.O., Abd-Elwakil, M.M., Abd-Elsalam, K., Elsayed, M.T., Hashem, Y., Mohamed, O.: Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr. Pharm. Des. 22(22), 3305–3323 (2016)

    Article  Google Scholar 

  84. Mishra, D., Hubenak, J.R., Mathur A.B.: Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J. Biomed. Mater. Res. Part A 101(A):3646–3660 (2013)

    Google Scholar 

  85. http://clinicaltrials.gov/ct2/show/NCT02766699. The Johns Hopkins Hospital. A Phase 1 Study to Evaluate the Safety, Tolerability, and Immunogenicity of EGFR (Vectibix® Sequence)-Targeted EnGeneIC Dream Vectors Containing Doxorubicin (EGFR(V)-EDV-Dox) in Subjects With Recurrent Glioblastoma Multiforme (GBM) Available

  86. http://clinicaltrials.gov/ct2/show/NCT01906385. TheUniversity of Texas Health Science Center at San Antonio. A dual Phase 1/2, Investigator initiated study to determine the maximum tolerated dose, safety, and efficacy of rhenium nanoliposomes in recurrent Glioblastoma

  87. https://clinicaltrials.gov/ct2/show/NCT02511028, NINDS, National Institute of Neurological Disorders and Stroke. In Vivo Characterization of Inflammation With Ferumoxytol, an Ultrasmall Superparamagnetic Iron Oxide Nanoparticle, on 7 Tesla Magnetic Resonance Imaging

  88. Sela, H., Cohen, H., Elia, P., Zach, R., Karpas, Z., Zeiri, Y.: Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J. Nanobiotechnol. 13, 71 (2015)

    Article  Google Scholar 

  89. Schleh, C., Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schaffler, M., et al.: Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6(1), 36–46 (2012)

    Article  Google Scholar 

  90. Xu, L., Dan, M., Shao, A., Cheng, X., Zhang, C., Yokel, R.A., Takemura, T., Hanagata, N., Niwa, M., Watanabe, D.: Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int. J. Nanomed. 29(10), 6105–6118 (2015)

    Google Scholar 

  91. Benezra, M., Penate-Medina, O., Zanzonico, P.B., Schaer, D., Ow, H., Burns, A., et al.: Multimodal silica nanoparticles are effective cancer targeted probes in a model of human melanoma. J. Clin. Invest. 121(7), 2768–2780 (2011)

    Article  Google Scholar 

  92. Disdier, C., Devoy, J., Cosnefroy, A., Chalansonnet, M., Herlin-Boime, N., Brun, E., Lund, A., Mabondzo, A.: Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol. 4(12), 27 (2015)

    Article  Google Scholar 

  93. Wang, Xueqin, Miaomiao, Tu, Tian, Baoming, Yi, Yanjie, Wei, ZhenZhen, Wei, Fang: Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal. Biochem. 512, 8–17 (2015)

    Article  Google Scholar 

  94. Datta, N.R., Krishnan, S., Speiser, D.E., Neufeld, E., Kuster, N., Bodis, S., Hofmann, H.: Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat. Rev. 50, 217–227 (2016)

    Article  Google Scholar 

  95. Fantechi, E., Innocenti, C., Zanardelli, M., Fittipaldi, M., Falvo, E., Carbo, M., Shullani, V., Di Cesare, M.L., Ghelardini, C., Ferretti, A.M., Ponti, A., Sangregorio, C., Ceci, P.: A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 8(5), 4705–4719 (2014)

    Article  Google Scholar 

  96. Velasco-Aguirre, C., Morales, F., Gallardo-Toledo, E., Guerrero, S., Giralt, E., Araya, E., Kogan, M.J.: Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int. J. Nanomed. 10(10), 4919–4936 (2015)

    Google Scholar 

  97. Ruan, S., Hu, C., Tang, X., Cun, X., Xiao, W., Shi, K., He, Q., Gao, H.: Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano. 10(11), 10086–10098 (2016)

    Google Scholar 

  98. Cheng, K.K., Chan, P.S., Fan, S., Kwan, S.M., Yeung, K.L., Wáng, Y.X., Chow, A.H., Wu, E.X., Baum, L.: Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44, 155–172 (2015)

    Article  Google Scholar 

  99. Shen, W.B., Anastasiadis, P., Nguyen, B., Yarnell, D., Yarowsky, P.J., Frenkel, V., Fishman, P.S.: Magnetic enhancement of stem cell-targeted delivery into the brain following MR-guided focused ultrasound for opening the blood-brain barrier. Cell Transplant. 26(7), 1235–1246 (2017)

    Article  Google Scholar 

  100. Yin, Z., Yul, T., Xu, Y.: Preparation of amyloid immuno-nanoparticles as potential MRI contrast agents for Alzheimer’s disease diagnosis. J. Nanosci. Nanotechnol. 15(9), 6429–6434 (2015)

    Article  Google Scholar 

  101. Fan, C.H., Ting, C.Y., Lin, H.J., Wang, C.H., Liu, H.L., Yen, T.C., Yeh, C.K.: SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 34(14), 3706–3715 (2013)

    Article  Google Scholar 

  102. Fan, C.-H., Cheng, Y.-H., Ting, C.-Y., et al.: Ultrasound/Magnetic targeting with SPIO-DOX-Microbubble complex for image-guided drug delivery in brain tumors. Theranostics. 6(10), 1542–1556 (2016). https://doi.org/10.7150/thno.15297

    Article  Google Scholar 

  103. Sintov, A.C., Velasco-Aguirre, C., Gallardo-Toledo, E., Araya, E., Kogan, M.J.: Metal nanoparticles as targeted carriers circumventing the blood-brain barrier. Int. Rev. Neurobiol. 130, 199–227 (2016)

    Article  Google Scholar 

  104. Qin, Y., Chen, H., Zhang, Q., et al.: Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int. J. Pharm. 420(2), 304–312 (2011)

    Article  Google Scholar 

  105. Wei, L., Guo, X.Y., Yang, T., Yu, M.Z., Chen, D.W., Wang, J.C.: Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int. J. Pharm. 510(1), 394–405 (2016)

    Article  Google Scholar 

  106. Kaur, I.P., Bhandari, R., Bhandari, S., Kakkar, V.: Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 127(2), 97–109 (2008)

    Article  Google Scholar 

  107. Muntimadugu, E., Dhommati, R., Jain, A., Challa, V.G.S., Shaheen, M., Khan, W.: Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 92, 224–234 (2016)

    Article  Google Scholar 

  108. Kuo, Y.-C., Cheng, S.-J.: Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int. J. Pharm. 499(1–2), 10–19 (2016)

    Article  Google Scholar 

  109. Ahmad, N., Ahmad, R., Naqvi, A.A., Alam, M.A., Ashafaq, M., Samim, M., Iqbal, Z., Ahmad, F.J.: Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int. J. Biol. Macromol. 91, 640–655 (2016)

    Google Scholar 

  110. Kim, J.Y., Choi, W.I., Kim, Y.H., Tae, G.: Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic based nano-carrier. Biomaterials 34(4), 1170–1178 (2013)

    Article  Google Scholar 

  111. Yurui, Xu, Asghar, Sajid, Yang, Liu, Li, Hongying, Wang, Zhilin, Ping, Qineng, Xiao, Yanyu: Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr. Polym. 157, 419–428 (2017)

    Article  Google Scholar 

  112. Jose, S., Juna, B.C., Cinu, T.A., Jyoti, H., Aleykutty, N.A.: Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies. Colloids Surf. B Biointerfaces 142, 307–314 (2016)

    Article  Google Scholar 

  113. Sun, D., Li, N., Zhang, W., Zhao, Z., Mou, Z., Huang, D., Liu, J., Wang, W.: Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf. B Biointerfaces 1(148), 116–129 (2016)

    Article  Google Scholar 

  114. Choonara, Y.E., Pillay, V., Ndesendo, V.M., du Toit, L.C., Kumar, P., Khan, R.A., et al.: Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf. B Biointerfaces 87(2), 243–254 (2011)

    Article  Google Scholar 

  115. Tosi, G., Vilella, A., Veratti, P., Belletti, D., Pederzoli, F., Ruozi, B., Vandelli, M.A., Zoli, M., Forni, F.: Exploiting bacterial pathways for BBB crossing with PLGA nanoparticles modified with a mutated form of diphtheria toxin (CRM197): in vivo experiments. Mol. Pharm. 12(10), 3672–3684 (2015)

    Article  Google Scholar 

  116. Jain, D.S., Bajaj, A.N., Athawale, R.B., Shikhande, S.S., Pandey, A., Goel, P.N., Gude, R.P., Patil, S., Raut, P.: Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater. Sci. Eng. C Mater. Biol. Appl. 63, 411–421 (2016)

    Article  Google Scholar 

  117. Åslund, A.K., Berg, S., Hak, S., Mørch, Ý., Torp, S.H., Sandvig, A., Widerøe, M., Hansen, R., de Lange Davies, C.: Nanoparticle delivery to the brain—by focused ultrasound and self-assembled nanoparticle-stabilized microbubbles. J. Control. Release 220(Pt A), 287–294 (2015)

    Google Scholar 

  118. Frosina, G.: Nanoparticle-mediated drug delivery to high-grade gliomas. Nanomedicine 12(4), 1083–1093 (2016)

    Article  Google Scholar 

  119. Zhang, L., Zhao, D.: Applications of nanoparticles for brain cancer imaging and therapy. J. Biomed. Nanotechnol. 10(9), 1713–1731 (2014)

    Article  Google Scholar 

  120. http://www.pdf.org/en/parkinson_statistics Understanding Parkinson’s, Park. Dis. Found. (Accessed 14 June 2015)

Download references

Aknowledgements

The Authors thank the grants RVO 61388971, MSMT COST CZ LD 15135, UniCredit Bank CZ, Iginio Longo, Tristano Testa and CAMIC CZ Fund. This work was developed in the framework of COST Action MiMed TD1301 WG2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Vannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajsiglova, L., Vannucci, L. (2018). Local Treatment of Brain Tumors and the Blood-Brain Barrier. In: Crocco, L., Karanasiou, I., James, M., Conceição, R. (eds) Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-75007-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75007-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75006-4

  • Online ISBN: 978-3-319-75007-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics