Skip to main content

On Birch and Swinnerton-Dyer’s Cubic Surfaces

  • Conference paper
  • First Online:
  • 381 Accesses

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 11))

Abstract

In a 1975 paper of Birch and Swinnerton-Dyer, a number of explicit norm form cubic surfaces are shown to fail the Hasse principle. They make a correspondence between this failure and the Brauer–Manin obstruction, recently discovered by Manin. We extend their work to show that a larger set of cubic surfaces has a Brauer–Manin obstruction to the Hasse principle, thus verifying the Colliot-Thélène–Sansuc conjecture for infinitely many cubic surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.J. Birch, P. Swinnerton-Dyer, The Hasse problem for rational surfaces. J. Reine Angew. Math. 274(275), 164–174 (1975)

    MathSciNet  MATH  Google Scholar 

  2. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24(3-4), 235–265 (1997); Computational algebra and number theory (London, 1993)

    Google Scholar 

  3. J.W.S. Cassels, M.J.T. Guy, On the Hasse principle for cubic surfaces. Mathematika 13(02), 111–120 (1966)

    Article  MathSciNet  Google Scholar 

  4. J.-L. Colliot-Thélène, Points rationnels sur les fibrations, in Higher Dimensional Varieties and Rational Points, ed. by K.J. Böröczky, J. Kollár, T. Szamuely (Springer, Heidelberg, 2003), pp. 171–221

    Chapter  Google Scholar 

  5. J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles, in Journées de Géométrie Algébrique d’Angers, Juillet 1979, ed. by A. Beauville (Sijthof and Noordhof, Leiden, 1980), pp. 223–237

    Google Scholar 

  6. J.-L. Colliot-Thélène, D. Kanevsky, J.-J. Sansuc, Arithmétique des surfaces cubiques diagonales, in Diophantine Approximation and Transcendence Theory (Springer, Heidelberg, 1987), pp. 1–108

    Book  Google Scholar 

  7. P. Corn, Del Pezzo surfaces and the Brauer–Manin obstruction. PhD thesis, University of California, Berkely (2005)

    Google Scholar 

  8. A.S. Elsenhans, J. Jahnel, On the order three Brauer classes for cubic surfaces. Open Math. 10(3), 903–926 (2012)

    MathSciNet  MATH  Google Scholar 

  9. A.S. Elsenhans, J. Jahnel, Cubic surfaces violating the Hasse principle are Zariski dense in the moduli scheme. Adv. Math. 280, 360–378 (2015)

    Article  MathSciNet  Google Scholar 

  10. Y. Harpaz, O. Wittenberg, On the fibration method for zero-cycles and rational points. Ann. Math. 183(1), 229–295 (2016)

    Article  MathSciNet  Google Scholar 

  11. J. Jahnel, Brauer Groups, Tamagawa Measures, and Rational Points on Algebraic Varieties, vol. 198 (American Mathematical Society, Providence, 2014)

    MATH  Google Scholar 

  12. Y.I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du Congres International des Mathématiciens, vol. 1 (World Scientific, Singapore, 1971), pp. 401–411

    Google Scholar 

  13. Y.I. Manin, Cubic Forms: Algebra, Geometry, Arithmetic, vol. 4 (North-Holland, Amsterdam, 1974)

    MATH  Google Scholar 

  14. H. Nishimura, Some remarks on rational points. Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 29(2), 189–192 (1955)

    Article  MathSciNet  Google Scholar 

  15. J.P. Serre, Local Fields, vol. 67 (Springer, New York, 1979)

    MATH  Google Scholar 

  16. H.P.F. Swinnerton-Dyer, The Brauer group of cubic surfaces. Math. Proc. Camb. Philos. Soc. 113(03), 449–460 (1993)

    Article  MathSciNet  Google Scholar 

  17. H.P.F. Swinnerton-Dyer, Brauer–Manin obstructions on some del Pezzo surfaces. Math. Proc. Camb. Philos. Soc. 125(02), 193–198 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mckenzie West .

Editor information

Editors and Affiliations

Appendix

Appendix

Magma Code for Defining Equation Computation

> R<phi_0,phi_1,phi_2,psi_0,psi_1,psi_2,theta, thetabar,d> := PolynomialRing(Rationals(),9); > Q := FieldOfFractions(R); > A4<A,B,C,D> := AffineSpace(Q,4); > polys := [1+A∗phi_0+C∗psi_0, > theta∗(1+phi_1∗A+psi_1∗C)-(B∗phi_1+D∗psi_1), > thetabar∗(1+phi_2∗A+psi_2∗C)-(B∗phi_2+D∗psi_2), > (B∗phi_0+D∗psi_0)∗(B∗phi_1+D∗psi_1)∗ (B∗phi_2+D∗psi_2)-d∗theta∗thetabar]; > > S := Scheme(A4,polys); > f := ClearDenominators(GroebnerBasis(S))[4]; > cos := Coefficients(f); > > Factorization(R!cos[1]); [     <theta - thetabar, 1>,     <phi_1∗psi_2 - phi_2∗psi_1, 2>,     <phi_0∗psi_2 - phi_2∗psi_0, 2>,     <phi_0∗psi_1 - phi_1∗psi_0, 2> ] > Factorization(R!cos[2]); [     <phi_1∗psi_2 - phi_2∗psi_1, 1>,     <phi_0∗psi_2 - phi_2∗psi_0, 1>,     <phi_0∗psi_1 - phi_1∗psi_0, 1>,     <phi_0∗psi_1 - phi_0∗psi_2 - phi_1∗psi_0 +     phi_1∗psi_2 + phi_2∗psi_0 - phi_2∗psi_1, 1>,     <phi_0∗phi_1∗psi_2∗theta∗thetabar -     1/2∗phi_0∗phi_1∗psi_2∗thetabar̂2 +     1/2∗phi_0∗phi_2∗psi_1∗thetâ2 -     phi_0∗phi_2∗psi_1∗theta∗thetabar -     1/2∗phi_1∗phi_2∗psi_0∗thetâ2 +     1/2∗phi_1∗phi_2∗psi_0∗thetabar̂2, 1> ] > Factorization(R!cos[3]); [     <thetabar, 1>,     <theta, 1>,     <phi_0∗psi_1 - phi_0∗psi_2 - phi_1∗psi_0 +     phi_1∗psi_2 + phi_2∗psi_0 - phi_2∗psi_1, 2>,     <phi_0̂2∗phi_1̂2∗psi_2̂2∗thetabar +     2∗phi_0̂2∗phi_1∗phi_2∗psi_1∗psi_2∗theta -     2∗phi_0̂2∗phi_1∗phi_2∗psi_1∗psi_2∗thetabar -     phi_0̂2∗phi_2̂2∗psi_1̂2∗theta -     2∗phi_0∗phi_1̂2∗phi_2∗psi_0∗psi_2∗theta +     2∗phi_0∗phi_1∗phi_2̂2∗psi_0∗psi_1∗thetabar +     phi_1̂2∗phi_2̂2∗psi_0̂2∗theta -     phi_1̂2∗phi_2̂2∗psi_0̂2∗thetabar, 1> ] > Factorization(&+ [t : t in Terms(R!cos[4]) | not IsDivisibleBy(t,d)]); [     <thetabar, 2>,     <theta, 2>,     <phi_2, 1>,     <phi_1, 1>,     <phi_0, 1>,     <phi_0∗psi_1 - phi_0∗psi_2 - phi_1∗psi_0 +     phi_1∗psi_2 + phi_2∗psi_0 - phi_2∗psi_1, 3> ] > Factorization(&+ [t : t in Terms(R!cos[4]) | IsDivisibleBy(t,d)]); [     <d, 1>,     <phi_0∗phi_1∗psi_2∗thetabar -     phi_0∗phi_2∗psi_1∗theta +     phi_1∗phi_2∗psi_0∗theta -     phi_1∗phi_2∗psi_0∗thetabar, 3> ]

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s) and the Association for Women in Mathematics

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

West, M. (2018). On Birch and Swinnerton-Dyer’s Cubic Surfaces. In: Bouw, I., Ozman, E., Johnson-Leung, J., Newton, R. (eds) Women in Numbers Europe II. Association for Women in Mathematics Series, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-74998-3_10

Download citation

Publish with us

Policies and ethics