Dynamical Mean Field Theory for Oxide Heterostructures

  • O. JansonEmail author
  • Z. Zhong
  • G. Sangiovanni
  • K. Held
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)


Transition metal oxide heterostructures often, but by far not always, exhibit strong electronic correlations. State-of-the-art calculations account for these by dynamical mean field theory (DMFT). We discuss the physical situations in which DMFT is needed, not needed, and where it is actually not sufficient. By means of an example, \(\text {SrVO}_3/\text {SrTiO}_3\), we discuss step-by-step and figure-by-figure a density functional theory (DFT) + DMFT calculation. The second part reviews DFT + DMFT calculations for oxide heterostructure focusing on titanates, nickelates, vanadates, and ruthenates.


  1. 1.
    A. Georges, G. Kotliar, Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992).
  2. 2.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).
  3. 3.
    W. Metzner, D. Vollhardt, Correlated lattice fermions in d = \(\infty \) dimensions. Phys. Rev. Lett. 62, 324–327 (1989).
  4. 4.
    K. Held, Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829–926 (2007).
  5. 5.
    G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).
  6. 6.
    A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO\(_3\)/SrTiO\(_3\) heterointerface. Nature (London) 427, 423–426 (2004).
  7. 7.
    Z. Zhong, Q. Zhang, K. Held, Quantum confinement in perovskite oxide heterostructures: tight binding instead of a nearly free electron picture. Phys. Rev. B 88, 125,401 (2013).
  8. 8.
    A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhés, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P.L. Févre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO\(_3\). Nature (London) 469, 189–193 (2011).
  9. 9.
    Z. Wang, Z. Zhong, X. Hao, S. Gerhold, B. Stoger, M. Schmid, J. Sanchez-Barriga, A. Varykhalov, C. Franchini, K. Held, U. Diebold, Anisotropic two-dimensional electron gas at SrTiO\(_3\)(110) protected by its native overlayer. Proc. Nat. Acad. Sci. 333, 3933 (2014).
  10. 10.
    K. Yoshimatsu, K. Horiba, H. Kumigashir, T. Yoshida, A. Fujimori, M. Oshima, Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319–322 (2011).
  11. 11.
    M. Behrmann, F. Lechermann, Interface exchange processes in LaAlO\(_{3}\) / SrTiO\(_{3}\) induced by oxygen vacancies. Phys. Rev. B 92, 125,148 (2015).
  12. 12.
    G. Berner, A. Müller, F. Pfaff, J. Walde, C. Richter, J. Mannhart, S. Thiess, A. Gloskovskii, W. Drube, M. Sing, R. Claessen, Band alignment in LaAlO\(_{3}\)/SrTiO\(_{3}\) oxide heterostructures inferred from hard x-ray photoelectron spectroscopy. Phys. Rev. B 88, 115,111 (2013).
  13. 13.
    G. Berner, M. Sing, H. Fujiwara, A. Yasui, Y. Saitoh, A. Yamasaki, Y. Nishitani, A. Sekiyama, N. Pavlenko, T. Kopp, C. Richter, J. Mannhart, S. Suga, R. Claessen, Direct \(k\)-space mapping of the electronic structure in an oxide-oxide interface. Phys. Rev. Lett. 110, 247,601 (2013).
  14. 14.
    H.O. Jeschke, J. Shen, R. Valentí, Localized versus itinerant states created by multiple oxygen vacancies in SrTiO\(_3\). New J. Phys. 17, 023,034 (2015).
  15. 15.
    M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
  16. 16.
    A. Liebsch, Surface versus bulk Coulomb correlations in photoemission spectra of SrVO\(_{3}\) and CaVO\(_{3}\). Phys. Rev. Lett. 90, 096,401 (2003).
  17. 17.
    Z. Zhong, M. Wallerberger, J.M. Tomczak, C. Taranto, N. Parragh, A. Toschi, G. Sangiovanni, K. Held, Electronics with correlated oxides: SrVO\(_3\)/SrTiO\(_3\) as a Mott transistor. Phys. Rev. Lett. 114, 246,401 (2015).
  18. 18.
    G. Lantz, M. Hajlaoui, E. Papalazarou, V.L.R. Jacques, A. Mazzotti, M. Marsi, S. Lupi, M. Amati, L. Gregoratti, L. Si, Z. Zhong, K. Held, Surface effects on the Mott-Hubbard transition in archetypal V\(_{2}\)O\(_{3}\). Phys. Rev. Lett. 115, 236,802 (2015).
  19. 19.
    A. Georges, L. de’ Medici, J. Mravlje, Strong electronic correlations from Hund’s coupling. Ann. Rev. Condens. Matter Phys. 4, 137 (2013).
  20. 20.
    Z.P. Yin, K. Haule, G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Phys. 10, 932 (2011).
  21. 21.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard \(U\) instead of Stoner \(I\). Phys. Rev. B 44, 943–954 (1991).
  22. 22.
    G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gunnarsson, S.K. Mo, J.W. Allen, H.D. Kim, A. Sekiyama, A. Yamasaki, S. Suga, P. Metcalf, Static versus dynamical mean-field theory of Mott antiferromagnets. Phys. Rev. B 73, 205,121 (2006).
  23. 23.
    D.D. Cuong, B. Lee, K.M. Choi, H.S. Ahn, S. Han, J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO\(_{3}\): LDA+\(U\) study. Phys. Rev. Lett. 98, 115,503 (2007).
  24. 24.
    Z. Zhong, P.X. Xu, P.J. Kelly, Polarity-induced oxygen vacancies at LaAlO\(_{3}\)SrTiO\(_{3}\) interfaces. Phys. Rev. B 82, 165,127 (2010).
  25. 25.
    P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, K. Held, Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. Phys. Rev. Lett. 104, 197,002 (2010).
  26. 26.
    A. Galler, C. Taranto, M. Wallerberger, M. Kaltak, G. Kresse, G. Sangiovanni, A. Toschi, K. Held, Screened moments and absence of ferromagnetism in FeAl. Phys. Rev. B 92, 205,132 (2015).
  27. 27.
    T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).
  28. 28.
    A.A. Katanin, A. Toschi, K. Held, Comparing pertinent effects of antiferromagnetic fluctuations in the two- and three-dimensional Hubbard model. Phys. Rev. B 80, 075,104 (2009).
  29. 29.
    H. Kusunose, Influence of spatial correlations in strongly correlated electron systems: extension to dynamical mean field approximation. J. Phys. Soc. Jpn. 75, 054,713 (2006).
  30. 30.
    A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Dual fermion approach to nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033,101 (2008).
  31. 31.
    C. Slezak, M. Jarrell, T. Maier, J. Deisz, Multi-scale extensions to quantum cluster methods for strongly correlated electron systems. J. Phys.: Condens. Matter 21, 435,604 (2009).
  32. 32.
    A. Toschi, A.A. Katanin, K. Held, Dynamical vertex approximation: a step beyond dynamical mean-field theory. Phys. Rev. B 75, 045,118 (2007).
  33. 33.
    A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S.I. Uchida, K. Takegahara, H. Harima, Y. Saitoh, I.A. Nekrasov, G. Keller, D.E. Kondakov, A.V. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, V.I. Anisimov, Mutual experimental and theoretical validation of bulk photoemission spectra of Sr\(_{1-x}\)Ca\(_x\)VO\(_3\). Phys. Rev. Lett. 93, 156,402 (2004).
  34. 34.
    T. Yoshida, K. Tanaka, H. Yagi, A. Ino, H. Eisaki, A. Fujimori, Z.X. Shen, Direct observation of the mass renormalization in SrVO\(_{3}\) by angle resolved photoemission spectroscopy. Phys. Rev. Lett. 95, 146,404 (2005).
  35. 35.
    I.H. Inoue, I. Hase, Y. Aiura, A. Fujimori, K. Morikawa, T. Mizokawa, Y. Haruyama, T. Maruyama, Y. Nishihara, Systematic change of spectral function observed by controlling electron correlation in Ca\(_{1x}\)Sr\(_x\)VO\(_3\) with fixed \(3d^1\) configuration. Physica C 235–240, 1007–1008 (1994).
  36. 36.
    K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, M. Oshima, Dimensional-crossover-driven metal-insulator transition in SrVO\(_{3}\) ultrathin films. Phys. Rev. Lett. 104, 147,601 (2010).
  37. 37.
    E.R. Ylvisaker, W.E. Pickett, K. Koepernik, Anisotropy and magnetism in the LSDA + \(U\) method. Phys. Rev. B 79, 035,103 (2009).
  38. 38.
    A.G. Petukhov, I.I. Mazin, L. Chioncel, A.I. Lichtenstein, Correlated metals and the LDA + \(U\) method. Phys. Rev. B 67, 153,106 (2003).
  39. 39.
    O. Grånäs, I.D. Marco, P. Thunström, L. Nordström, O. Eriksson, T. Björkman, J.M. Wills, Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications. Comput. Mater. Sci. 55, 295–302 (2012).
  40. 40.
    F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A. Yamasaki, O.K. Andersen, Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials. Phys. Rev. B 74, 125,120 (2006).
  41. 41.
    H. Park, A.J. Millis, C.A. Marianetti, Computing total energies in complex materials using charge self-consistent DFT+DMFT. Phys. Rev. B 90, 235,103 (2014).
  42. 42.
    I. Leonov, V.I. Anisimov, D. Vollhardt, First-principles calculation of atomic forces and structural distortions in strongly correlated materials. Phys. Rev. Lett. 112, 146,401 (2014).
  43. 43.
    K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.X. Zhang, S. Cottenier, Reproducibility in density functional theory calculations of solids. Science 351(6280), 1415 (2016).
  44. 44.
    K. Schwarz, P. Blaha, G. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comp. Phys. Commun. 147, 71–76 (2002).
  45. 45.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
  46. 46.
    J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13,244–13,249 (1992).
  47. 47.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
  48. 48.
    Z. Zhong, P. Wissgott, K. Held, G. Sangiovanni, Microscopic understanding of the orbital splitting and its tuning at oxide interfaces. EPL 99, 37,011 (2012).
  49. 49.
    N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).
  50. 50.
    N. Marzari, I. Souza, D. Vanderbilt, An introduction to maximally-localized Wannier functions. In: \(\Psi _k\) Newsletter (Highlight 57) (2003)Google Scholar
  51. 51.
    N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12,847–12,865 (1997).
  52. 52.
    A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions. Comp. Phys. Commun. 178, 685–699 (2008).
  53. 53.
    J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, K. Held, Wien2wannier: from linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888 (2010).
  54. 54.
    I.A. Nekrasov, K. Held, G. Keller, D.E. Kondakov, T. Pruschke, M. Kollar, O.K. Andersen, V.I. Anisimov, D. Vollhardt, Momentum-resolved spectral functions of SrVO\(_{3}\) calculated by LDA + DMFT. Phys. Rev. B 73, 155,112 (2006).
  55. 55.
    E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).
  56. 56.
    M. Wallerberger, A. Hausoel, P. Gunacker, A. Kowalski, N. Parragh, F. Goth, K. Held, G. Sangiovanni, W2dynamics: local one- and two-particle quantities from dynamical mean field theory, (2018). arXiv:1801.10209
  57. 57.
    M. Jarrell, J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data. Phys. Rep. 269, 133–195 (1996).
  58. 58.
    G. Keller, K. Held, V. Eyert, D. Vollhardt, V.I. Anisimov, Electronic structure of paramagnetic V\(_{2}\)O\(_{3}\): Strongly correlated metallic and mott insulating phase. Phys. Rev. B 70(20), 205,116 (2004).
  59. 59.
    R. Hesper, L.H. Tjeng, A. Heeres, G.A. Sawatzky, Photoemission evidence of electronic stabilization of polar surfaces in K\(_{3}\)C\(_{60}\). Phys. Rev. B 62, 16,046–16,055 (2000).
  60. 60.
    S. Okamoto, A.J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature (London) 428, 630–633 (2004).
  61. 61.
    S. Okamoto, A.J. Millis, N.A. Spaldin, Lattice relaxation in oxide heterostructures: LaTiO\(_{3}\)/SrTiO\(_{3}\) superlattices. Phys. Rev. Lett. 97, 056,802 (2006).
  62. 62.
    S. Okamoto, A.J. Millis, Spatial inhomogeneity and strong correlation physics: a dynamical mean-field study of a model Mott-insulator–band-insulator heterostructure. Phys. Rev. B 70, 241,104 (2004).
  63. 63.
    P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O.K. Andersen, K. Held, Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016,401 (2009).
  64. 64.
    F. Lechermann, L. Boehnke, D. Grieger, Formation of orbital-selective electron states in LaTiO\(_{3}\)/SrTiO\(_{3}\) superlattices. Phys. Rev. B 87, 241,101 (2013).
  65. 65.
    F. Lechermann, L. Boehnke, D. Grieger, C. Piefke, Electron correlation and magnetism at the LaAlO\(_{3}\)/SrTiO\(_{3}\) interface: A DFT + DMFT investigation. Phys. Rev. B 90, 085,125 (2014).
  66. 66.
    F. Lechermann, H.O. Jeschke, A.J. Kim, S. Backes, R. Valentí, Electron dichotomy on the SrTiO\(_{3}\) defect surface augmented by many-body effects. Phys. Rev. B 93, 121,103 (2016).
  67. 67.
    M. Altmeyer, H.O. Jeschke, O. Hijano-Cubelos, C. Martins, F. Lechermann, K. Koepernik, A.F. Santander-Syro, M.J. Rozenberg, R. Valentí, M. Gabay, Magnetism, spin texture, and in-gap states: atomic specialization at the surface of oxygen-deficient SrTiO\(_{3}\). Phys. Rev. Lett. 116, 157–203 (2016).
  68. 68.
    E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, O.K. Andersen, Mott transition and suppression of orbital fluctuations in orthorhombic 3\(d^1\) perovskites. Phys. Rev. Lett. 92, 176,403 (2004).
  69. 69.
    E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, How chemistry controls electron localization in 3\(d^1\) perovskites: a Wannier-function study. New J. Phys. 7, 188 (2005).
  70. 70.
    K. Dymkowski, C. Ederer, Strain-induced insulator-to-metal transition in LaTiO\(_{3}\) within DFT+DMFT. Phys. Rev. B 89, 161,109 (2014).
  71. 71.
    F. Lechermann, M. Obermeyer, Towards Mott design by \(\delta \)-doping of strongly correlated titanates. New J. Phys. 17, 043,026 (2015).
  72. 72.
    G. Catalan, Progress in perovskite nickelate research. Phase Transitions 81, 729–749 (2008).
  73. 73.
    J.L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, J.B. Torrance, Neutron-diffraction study of \(R\)NiO\(_{3}\) (\(R\) =La, Pr, Nd, Sm): Electronically induced structural changes across the metal-insulator transition. Phys. Rev. B 46, 4414–4425 (1992).
  74. 74.
    J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Systematic study of insulator-metal transitions in perovskites \(R\)NiO\(_{3}\) (\(R\) =Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).
  75. 75.
    J.A. Alonso, J.L. García-Muñoz, M.T. Fernández-Díaz, M.A.G. Aranda, M.J. Martínez-Lope, M.T. Casais, Charge disproportionation in \(R\)NiO\(_{3}\) perovskites: Simultaneous metal-insulator and structural transition in YNiO\(_{3}\). Phys. Rev. Lett. 82, 3871–3874 (1999).
  76. 76.
    E.A. Nowadnick, J.P. Ruf, H. Park, P.D.C. King, D.G. Schlom, K.M. Shen, A.J. Millis, Quantifying electronic correlation strength in a complex oxide: a combined DMFT and ARPES study of LaNiO\(_{3}\). Phys. Rev. B 92, 245,109 (2015).
  77. 77.
    J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde, P. Lacorre, M.T. Fernandez-Díaz, F. Fauth, V. Trounov, Neutron-diffraction study of the magnetic and orbital ordering in \(^{154}\)SmNiO\(_{3}\) and \(^{153}\)EuNiO\(_{3}\). Phys. Rev. B 57, 456–464 (1998).
  78. 78.
    U. Staub, G.I. Meijer, F. Fauth, R. Allenspach, J.G. Bednorz, J. Karpinski, S.M. Kazakov, L. Paolasini, F. d’Acapito, Direct observation of charge order in an epitaxial NdNiO\(_{3}\) film. Phys. Rev. Lett. 88, 126,402 (2002).
  79. 79.
    B. Lau, A.J. Millis, Theory of the magnetic and metal-insulator transitions in \(R\)NiO\(_{3}\) bulk and layered structures. Phys. Rev. Lett. 110, 126,404 (2013).
  80. 80.
    S. Lee, R. Chen, L. Balents, Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106, 016,405 (2011).
  81. 81.
    S. Lee, R. Chen, L. Balents, Metal-insulator transition in a two-band model for the perovskite nickelates. Phys. Rev. B 84, 165,119 (2011).
  82. 82.
    V.I. Anisimov, D. Bukhvalov, T.M. Rice, Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).
  83. 83.
    J. Chaloupka, G. Khaliullin, Orbital order and possible superconductivity in LaNiO\(_3\)/LaMO\(_3\) superlattices. Phys. Rev. Lett. 100, 016,404 (2008).
  84. 84.
    P. Hansmann, A. Toschi, X. Yang, O.K. Andersen, K. Held, Electronic structure of nickelates: from two-dimensional heterostructures to three-dimensional bulk materials. Phys. Rev. B 82, 235,123 (2010).
  85. 85.
    M.J. Han, X. Wang, C.A. Marianetti, A.J. Millis, Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107, 206,804 (2011).
  86. 86.
    N. Parragh, G. Sangiovanni, P. Hansmann, S. Hummel, K. Held, A. Toschi, Effective crystal field and Fermi surface topology: a comparison of \(d\)- and \(dp\)-orbital models. Phys. Rev. B 88, 195,116 (2013).
  87. 87.
    O.E. Peil, M. Ferrero, A. Georges, Orbital polarization in strained LaNiO\(_{3}\): structural distortions and correlation effects. Phys. Rev. B 90, 045,128 (2014).
  88. 88.
    E. Benckiser, M.W. Haverkort, S. Brück, E. Goering, S. Macke, A. Frañó, X. Yang, O.K. Andersen, G. Cristiani, H.U. Habermeier, A.V. Boris, I. Zegkinoglou, P. Wochner, H.J. Kim, V. Hinkov, B. Keimer, Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189 (2011).
  89. 89.
    M. Wu, E. Benckiser, M.W. Haverkort, A. Frano, Y. Lu, U. Nwankwo, S. Brück, P. Audehm, E. Goering, S. Macke, V. Hinkov, P. Wochner, G. Christiani, S. Heinze, G. Logvenov, H.U. Habermeier, B. Keimer, Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys. Rev. B 88, 125,124 (2013).
  90. 90.
    A.S. Disa, D.P. Kumah, A. Malashevich, H. Chen, D.A. Arena, E.D. Specht, S. Ismail-Beigi, F.J. Walker, C.H. Ahn, Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026,801 (2015).
  91. 91.
    H. Park, A.J. Millis, C.A. Marianetti, Influence of quantum confinement and strain on orbital polarization of four-layer LaNiO\(_{3}\) superlattices: A DFT + DMFT study. Phys. Rev. B 93, 235,109 (2016).
  92. 92.
    M. Uchida, K. Ishizaka, P. Hansmann, Y. Kaneko, Y. Ishida, X. Yang, R. Kumai, A. Toschi, Y. Onose, R. Arita, K. Held, O.K. Andersen, S. Shin, Y. Tokura, Pseudogap of metallic layered nickelate \({\rm R\mathit{}_{\rm 2x}} {\rm Sr\mathit{}_{\rm x}} {\rm NiO}_{4}\) (R=Nd,Eu) crystals measured using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 027,001 (2011).
  93. 93.
    H. Chen, H. Park, A.J. Millis, C.A. Marianetti, Charge transfer across transition-metal oxide interfaces: emergent conductance and electronic structure. Phys. Rev. B 90, 245,138 (2014).
  94. 94.
    Z. Fang, N. Nagaosa, Quantum versus Jahn-Teller orbital physics in YVO\(_{3}\) and LaVO\(_{3}\). Phys. Rev. Lett. 93, 176,404 (2004).
  95. 95.
    M. De Raychaudhury, E. Pavarini, O.K. Andersen, Orbital fluctuations in the different phases of YVO\(_{3}\) and LaVO\(_{3}\). Phys. Rev. Lett. 99, 126,402 (2007).
  96. 96.
    Y. Hotta, T. Susaki, H.Y. Hwang, Polar discontinuity doping of the LaVO\(_{3}\)/SrTiO\(_{3}\) interface. Phys. Rev. Lett. 99, 236,805 (2007).
  97. 97.
    E. Assmann, P. Blaha, R. Laskowski, K. Held, S. Okamoto, G. Sangiovanni, Oxide heterostructures for efficient solar cells. Phys. Rev. Lett. 110, 078–701 (2013).
  98. 98.
    E. Assmann, Spectral properties of strongly correlated materials. Ph.D. thesis, TU Wien (2015)Google Scholar
  99. 99.
    P. Werner, K. Held, M. Eckstein, Role of impact ionization in the thermalization of photoexcited mott insulators. Phys. Rev. B 90, 235,102 (2014).
  100. 100.
    L. Wang, Y. Li, A. Bera, C. Ma, F. Jin, K. Yuan, W. Yin, A. David, W. Chen, W. Wu, W. Prellier, S. Wei, T. Wu, Device performance of the Mott insulator LaVO\(_{3}\) as a photovoltaic material. Phys. Rev. Applied 3, 064,015 (2015).
  101. 101.
    M. Nakamura, F. Kagawa, T. Tanigaki, H.S. Park, T. Matsuda, D. Shindo, Y. Tokura, M. Kawasaki, Spontaneous polarization and bulk photovoltaic effect driven by polar discontinuity in LaFeO\(_{3}\)/SrTiO\(_{3}\) heterojunctions. Phys. Rev. Lett. 116, 156,801 (2016).
  102. 102.
    G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.B. Eom, D.H.A. Blank, M.R. Beasley, Structure, physical properties, and applications of SrRuO\(_3\) thin films. Rev. Mod. Phys. 84, 253–298 (2012).
  103. 103.
    W.E. Bell, M. Tagami, High-temperature chemistry of the ruthenium-osygen system. J. Phys. Chem. 67, 2432–2436 (1963).
  104. 104.
    D. Toyota, I. Ohkubo, H. Kumigashira, M. Oshima, T. Ohnishi, M. Lippmaa, M. Takizawa, A. Fujimori, K. Ono, M. Kawasaki, H. Koinuma, Thickness-dependent electronic structure of ultrathin SrRuO\(_3\) films studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 87, 162,508 (2005).
  105. 105.
    J. Xia, W. Siemons, G. Koster, M.R. Beasley, A. Kapitulnik, Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO\(_{3}\). Phys. Rev. B 79, 140,407 (2009).
  106. 106.
    J.M. Rondinelli, N.M. Caffrey, S. Sanvito, N.A. Spaldin, Electronic properties of bulk and thin film SrRuO\(_{3}\): Search for the metal-insulator transition. Phys. Rev. B 78, 155,107 (2008).
  107. 107.
    P. Mahadevan, F. Aryasetiawan, A. Janotti, T. Sasaki, Evolution of the electronic structure of a ferromagnetic metal: case of SrRuO\(_{3}\). Phys. Rev. B 80, 035,106 (2009).
  108. 108.
    G. Rijnders, D.H.A. Blank, J. Choi, C.B. Eom, Enhanced surface diffusion through termination conversion during epitaxial SrRuO\(_3\) growth. Appl. Phys. Lett. 84, 505 (2004).
  109. 109.
    E. Jakobi, S. Kanungo, S. Sarkar, S. Schmitt, T. Saha-Dasgupta, LDA + DMFT study of Ru-based perovskite SrRuO\(_{3}\) and CaRuO\(_{3}\). Phys. Rev. B 83, 041,103 (2011).
  110. 110.
    M. Kim, B.I. Min, Nature of itinerant ferromagnetism of SrRuO\(_{3}\): A DFT+DMFT study. Phys. Rev. B 91, 205,116 (2015).
  111. 111.
    L. Si, Z. Zhong, J.M. Tomczak, K. Held, Route to room-temperature ferromagnetic ultrathin SrRuO\(_{3}\) films. Phys. Rev. B 92, 041,108 (2015).
  112. 112.
    E. Assmann, P. Wissgott, J. Kuneš, A. Toschi, P. Blaha, K. Held, woptic: optical conductivity with Wannier functions and adaptive k-mesh refinements. Comput. Phys. Commun. 202, 1 (2016).
  113. 113.
    S. Bhandary, E. Assmann, M. Aichhorn, K. Held, Charge self-consistency in density functional theory + dynamical mean field theory: k-space reoccupation and orbital order, (2016). Phys. Rev. B 94, 155–131 (2016).
  114. 114.
    D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nature Commun. 2, 596 (2011).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Solid State PhysicsTU WienAustria
  2. 2.Max Planck Institute for Solid State PhysicsStuttgartGermany
  3. 3.Institut Für Theoretische Physik Und AstrophysikUniversität WürzburgWürzburgGermany

Personalised recommendations