Advertisement

Transport Properties of TMO Interfaces

  • A. M. R. V. L. Monteiro
  • A. D. Caviglia
  • N. Reyren
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)

Abstract

Phenomena that are absent of bulk TMO compounds can emerge at their interfaces when they are grown on top of each-other. A prototypical example of such emerging states is found at the \(\text {LaAlO}_{3}/\text {SrTiO}_{3}\) interface, which also attracted most of the initial interest for this new field of research (in the TMO context). Here we review some properties of this peculiar interface as investigated by transport measurements allowing the studies of different effects such as magnetism, superconductivity or Rashba effect; hence indirectly accessing the band structures studied by the methods presented in the rest of the book.

References

  1. 1.
    S. Thiel, G. Hammerl, A. Schmehl, C. Schneider, J. Mannhart, Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313(5795), 1942–1945 (2006)CrossRefGoogle Scholar
  2. 2.
    A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.M. Triscone, Electric field control of the LaAlO\(_3\)/SrTiO\(_3\) interface ground state. Nature 456(7222), 624–627 (2008).  https://doi.org/10.1038/nature07576CrossRefGoogle Scholar
  3. 3.
    C. Bell, S. Harashima, Y. Kozuka, M. Kim, B.G. Kim, Y. Hikita, H. Hwang, Dominant mobility modulation by the electric field effect at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phy. Rev. Lett. 103(22), 226802 (2009)Google Scholar
  4. 4.
    A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, J.M. Triscone, Tunable rashba spin-orbit interaction at oxide interfaces. Phy. Rev. Lett. 104(12), 126803 (2010).  https://doi.org/10.1103/PhysRevLett.104.126803, http://link.aps.org/doi/10.1103/PhysRevLett.104.126803
  5. 5.
    M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, Y. Dagan, Tuning spin-orbit coupling and superconductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface: a magnetotransport study. Phy. Rev. Lett. 104(12), 126802 (2010).  https://doi.org/10.1103/PhysRevLett.104.126802, http://link.aps.org/doi/10.1103/PhysRevLett.104.126802
  6. 6.
    A. Fête, S. Gariglio, A. Caviglia, J.M. Triscone, M. Gabaym, Rashba induced magnetoconductance oscillations in the LaAlO\(_3\)/SrTiO\(_3\) heterostructure. Phy. Rev. B 86(20), 201105 (2012)Google Scholar
  7. 7.
    A. Caviglia, S. Gariglio, C. Cancellieri, B. Sacepe, A. Fete, N. Reyren, M. Gabay, A. Morpurgo, J.M. Triscone, Two-dimensional quantum oscillations of the conductance at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Phy. Rev. Lett. 105(23), 236802 (2010)Google Scholar
  8. 8.
    A. Fête, S. Gariglio, C. Berthod, D. Li, D. Stornaiuolo, M. Gabay, J. Triscone, Large modulation of the shubnikov? de haas oscillations by the rashba interaction at the LaAlO\(_3\)/SrTiO\(_3\) interface. N. J. Phy. 16(11), 112002 (2014)Google Scholar
  9. 9.
    M. Diez, A. Monteiro, G. Mattoni, E. Cobanera, T. Hyart, E. Mulazimoglu, N. Bovenzi, C. Beenakker, A. Caviglia, Giant negative magnetoresistance driven by spin-orbit coupling at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phy. Rev. Lett. 115(1), 016803 (2015)Google Scholar
  10. 10.
    L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R. Ashoori, Very large capacitance enhancement in a two-dimensional electron system. Science 332(6031), 825–828 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Rössle, K.W. Kim, A. Dubroka, P. Marsik, C.N. Wang, R. Jany, C. Richter, J. Mannhart, C. Schneider, A. Frano et al., Electric-field-induced polar order and localization of the confined electrons in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Phy. Rev. Lett.110(13), 136805 (2013)Google Scholar
  12. 12.
    C. Cantoni, J. Gazquez, F. Miletto Granozio, M.P. Oxley, M. Varela, A.R. Lupini, S.J. Pennycook, C. Aruta, U.S. di Uccio, P. Perna et al., Electron transfer and ionic displacements at the origin of the 2d electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution. Adv. Mater. 24(29), 3952–3957 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Jia, S. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban, Oxygen octahedron reconstruction in the SrTiO\(_3\)/LaAlO\(_3\) heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phy. Rev. B 79(8), 081405 (2009)Google Scholar
  14. 14.
    M. Honig, J.A. Sulpizio, J. Drori, A. Joshua, E. Zeldov, S. Ilani, Local electrostatic imaging of striped domain order in LaAlO\(_3\)/SrTiO\(_3\). Nat. Mater. 12(12), 1112–1118 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Kalisky, E.M. Spanton, H. Noad, J.R. Kirtley, K.C. Nowack, C. Bell, H.K. Sato, M. Hosoda, Y. Xie, Y. Hikita et al., Locally enhanced conductivity due to the tetragonal domain structure in LaAlO\(_3\)/SrTiO\(_3\) heterointerfaces. Nat. Mater. 12(12), 1091–1095 (2013)CrossRefGoogle Scholar
  16. 16.
    I. Pallecchi, M. Codda, E. Galleani d’Agliano, D. Marré, A.D. Caviglia, N. Reyren, S. Gariglio, J.M. Triscone, Seebeck effect in the conducting LaAlO\(_3\)/SrTiO\(_3\) interface. Phy. Rev. B 81(8), 085414 (2010).  https://doi.org/10.1103/PhysRevB.81.085414
  17. 17.
    I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J.M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, D. Marré, Giant oscillating thermopower at oxide interfaces. Nat. Commun. 6 (2015)Google Scholar
  18. 18.
    J.S. Kim, S.S.A. Seo, M.F. Chisholm, R. Kremer, H.U. Habermeier, B. Keimer, H.N. Lee, Nonlinear hall effect and multichannel conduction in LaAlO\(_3\)/SrTiO\(_3\) superlattices. Phy. Rev. B 82(20), 201,407 (2010)Google Scholar
  19. 19.
    R. Pentcheva, M. Huijben, K. Otte, W.E. Pickett, J. Kleibeuker, J. Huijben, H. Boschker, D. Kockmann, W. Siemons, G. Koster, et al., Parallel electron-hole bilayer conductivity from electronic interface reconstruction. Phy. Rev. Lett. 104(16), 166804 (2010)Google Scholar
  20. 20.
    M.B. Shalom, A. Ron, A. Palevski, Y. Dagan, Shubnikov–de haas oscillations in SrTiO\(_3\)/LaAlO\(_3\) interface. Phy. Rev. Lett. 105(20), 206401 (2010)Google Scholar
  21. 21.
    S. Lerer, M. Ben Shalom, G. Deutscher, Y. Dagan, Low-temperature dependence of the thermomagnetic transport properties of the SrTiO\(_3\)/LaAlO\(_3\) interface. Phy. Rev. B 84(7), 075423 (2011).  https://doi.org/10.1103/PhysRevB.84.075423, http://link.aps.org/doi/10.1103/PhysRevB.84.075423
  22. 22.
    J. Biscaras, N. Bergeal, S. Hurand, C. Grossetête, A. Rastogi, R. Budhani, D. LeBoeuf, C. Proust, J. Lesueur, Two-dimensional superconducting phase in LaAlO\(_3\)/SrTiO\(_3\) heterostructures induced by high-mobility carrier doping. Phy. Rev. Lett. 108(24), 247004 (2012)Google Scholar
  23. 23.
    P. Brinks, W. Siemons, J. Kleibeuker, G. Koster, G. Rijnders, M. Huijben, Anisotropic electrical transport properties of a two-dimensional electron gas at SrTiO\(_3\)-LaAlO\(_3\) interfaces. Appl. Phy. Lett. 98(24), 242904 (2011)Google Scholar
  24. 24.
    A. Joshua, S. Pecker, J. Ruhman, E. Altman, S. Ilani, A universal critical density underlying the physics of electrons at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 3, 1129 (2012)CrossRefGoogle Scholar
  25. 25.
    M.B. Shalom, C. Tai, Y. Lereah, M. Sachs, E. Levy, D. Rakhmilevitch, A. Palevski, Y. Dagan, Anisotropic magnetotransport at the SrTiO\(_3\)/LaAlO\(_3\) interface. Physical Review B 80(14), 140403 (2009)Google Scholar
  26. 26.
    A. Annadi, Z. Huang, K. Gopinadhan, X.R. Wang, A. Srivastava, Z. Liu, H.H. Ma, T. Sarkar, T. Venkatesan et al., Fourfold oscillation in anisotropic magnetoresistance and planar hall effect at the LaAlO\(_3\)/SrTiO\(_3\) heterointerfaces: effect of carrier confinement and electric field on magnetic interactions. Phys. Rev. B 87(20), 201102 (2013)Google Scholar
  27. 27.
    Y. Liao, T. Kopp, C. Richter, A. Rosch, J. Mannhart, Metal-insulator transition of the LaAlO\(_3\)/SrTiO\(_3\) interface electron system. Phy. Rev. B 83(7), 075402 (2011)Google Scholar
  28. 28.
    C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Doping-dependent band structure of LaAlO\(_3\)/SrTiO\(_3\) interfaces by soft x-ray polarization-controlled resonant angle-resolved photoemission. Phy. Rev. B 89(12), 121412 (2014)Google Scholar
  29. 29.
    J. Ruhman, A. Joshua, S. Ilani, E. Altman, Competition between kondo screening and magnetism at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phy. Rev. B 90(12), 125123 (2014)Google Scholar
  30. 30.
    M.H. Fischer, S. Raghu, E.A. Kim, Spin–orbit coupling in LaAlO\(_3\)/SrTiO\(_3\) interfaces: magnetism and orbital ordering. N. J. Phy. 15(2), 023022 (2013)Google Scholar
  31. 31.
    Y. Kim, R.M. Lutchyn, C. Nayak, Origin and transport signatures of spin-orbit interactions in one-and two-dimensional SrTiO\(_3\)-based heterostructures. Phy. Rev. B 87(24), 245,121 (2013)Google Scholar
  32. 32.
    A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6(7), 493–496 (2007).  https://doi.org/10.1038/nmat1931, http://www.nature.com/doifinder/10.1038/nmat1931CrossRefGoogle Scholar
  33. 33.
    N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.M. Triscone, J. Mannhart, Superconducting interfaces between insulating oxides. Science 317(5842), 1196–1199 (2007).  https://doi.org/10.1126/science.1146006, http://www.sciencemag.org/cgi/doi/10.1126/science.1146006CrossRefGoogle Scholar
  34. 34.
    N. Reyren, S. Gariglio, A.D. Caviglia, D. Jaccard, T. Schneider, J.M. Triscone, Anisotropy of the superconducting transport properties of the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phy. Lett. 94(11), 112506 (2009).  https://doi.org/10.1063/1.3100777, http://scitation.aip.org/content/aip/journal/apl/94/11/10.1063/1.3100777
  35. 35.
    L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Nat. Phy. 7(10), 762–766 (2011).  https://doi.org/10.1038/nphys2080, http://www.nature.com/doifinder/10.1038/nphys2080
  36. 36.
    A.P. Petrović, A. Paré, T.R. Paudel, K. Lee, S. Holmes, C.H.W. Barnes, A. David, T. Wu, E.Y. Tsymbal, C. Panagopoulos, Emergent vortices at a ferromagnetic superconducting oxide interface. N. J. Phy. 16(10), 103012 (2014).  https://doi.org/10.1088/1367-2630/16/10/103012, http://stacks.iop.org/1367-2630/16/i=10/a=103012?key=crossref.95d78e23175af9dfd7f98da58155c926CrossRefGoogle Scholar
  37. 37.
    J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, K.A. Moler, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Phy. 7(10), 767–771 (2011).  https://doi.org/10.1038/nphys2079, http://www.nature.com/doifinder/10.1038/nphys2079
  38. 38.
    D.A. Dikin, M. Mehta, C.W. Bark, C.M. Folkman, C.B. Eom, V. Chandrasekhar, Coexistence of superconductivity and ferromagnetism in two dimensions. Phy. Rev. Lett. 107(5), 056802 (2011).  https://doi.org/10.1103/PhysRevLett.107.056802, http://link.aps.org/doi/10.1103/PhysRevLett.107.056802
  39. 39.
    M.P. Warusawithana, C. Richter, J.A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A.A. Pawlicki, L.F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J.N. Eckstein, D.A. Muller, C.S. Hellberg, J. Mannhart, D.G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Nat. Commun. 4, 2351 (2013).  https://doi.org/10.1038/ncomms3351
  40. 40.
    K. Narayanapillai, K. Gopinadhan, X. Qiu, A. Annadi, Ariando, T. Venkatesan, H. Yang, Current-driven spin orbit field in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Appl. Phy. Lett. 105(16), 162405 (2014).  https://doi.org/10.1063/1.4899122
  41. 41.
    Ariando, X. Wang, G. Baskaran, Z.Q. Liu, J. Huijben, J.B. Yi, A. Annadi, A.R. Barman, A. Rusydi, S. Dhar, Y.P. Feng, J. Ding, H. Hilgenkamp, T. Venkatesan, Electronic phase separation at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 2, 188 (2011).  https://doi.org/10.1038/ncomms1192, http://www.nature.com/doifinder/10.1038/ncomms1192
  42. 42.
    N. Pavlenko, T. Kopp, E.Y. Tsymbal, G.A. Sawatzky, J. Mannhart, Magnetic and superconducting phases at the LaAlO\(_3\)/SrTiO\(_3\) interface: the role of interfacial Ti 3\(d\) electrons. Phy. Rev. B 85(2), 020407 (2012).  https://doi.org/10.1103/PhysRevB.85.020407, http://link.aps.org/doi/10.1103/PhysRevB.85.020407
  43. 43.
    L. Weston, X.Y. Cui, S.P. Ringer, C. Stampfl, Density-functional prediction of a surface magnetic phase in LaAlO\(_3\)/SrTiO\(_3\) heterostructures induced by Al vacancies. Phy. Rev. Lett. 113(18), 186401 (2014).  https://doi.org/10.1103/PhysRevLett.113.186401, http://link.aps.org/doi/10.1103/PhysRevLett.113.186401
  44. 44.
    J.S. Lee, Y.W. Xie, H.K. Sato, C. Bell, Y. Hikita, H.Y. Hwang, C.C. Kao, Titanium dxy ferromagnetism at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nature Materials 12(8), 703–706 (2013).  https://doi.org/10.1038/nmat3674, http://www.nature.com/doifinder/10.1038/nmat3674CrossRefGoogle Scholar
  45. 45.
    M.R. Fitzsimmons, N.W. Hengartner, S. Singh, M. Zhernenkov, F.Y. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H.J.A. Molegraaf, J. de la Venta, I.K. Schuller, Upper limit to magnetism in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Phy. Rev. Lett. 107(21), 217201 (2011).  https://doi.org/10.1103/PhysRevLett.107.217201, http://link.aps.org/doi/10.1103/PhysRevLett.107.217201
  46. 46.
    E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrès, V. Cros, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthélémy, M. Bibes, Suppression of the critical thickness threshold for conductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 5 (2014).  https://doi.org/10.1038/ncomms5291, http://www.nature.com/doifinder/10.1038/ncomms5291
  47. 47.
    M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi, C. Piamonteze, G.M. De Luca, M. Minola, D. Marré, A. Gadaleta, H. Brune, F. Nolting, N.B. Brookes, G. Ghiringhelli, Origin of interface magnetism in BiMnO\(_3\)/SrTiO\(_3\) and LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Phy. Rev. Lett. 111(8), 087204 (2013).  https://doi.org/10.1103/PhysRevLett.111.087204, http://link.aps.org/doi/10.1103/PhysRevLett.111.087204
  48. 48.
    B. Kalisky, J.A. Bert, C. Bell, Y. Xie, H.K. Sato, M. Hosoda, Y. Hikita, H.Y. Hwang, K.A. Moler, Scanning probe manipulation of magnetism at the LaAlO\(_3\)/SrTiO\(_3\) heterointerface. Nano Lett. 12(8), 4055–4059 (2012).  https://doi.org/10.1021/nl301451e, http://pubs.acs.org/doi/abs/10.1021/nl301451eCrossRefGoogle Scholar
  49. 49.
    F. Bi, M. Huang, H. Lee, C.B. Eom, P. Irvin, J. Levy, LaAlO\(_3\) thickness window for electronically controlled magnetism at LaAlO\(_3\)/SrTiO\(_3\) heterointerfaces. Appl. Phy. Lett. 107(8), 082402 (2015).  https://doi.org/10.1063/1.4929430, http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929430
  50. 50.
    T.D. Ngo, J.W. Chang, K. Lee, S. Han, J.S. Lee, Y.H. Kim, M.H. Jung, Y.J. Doh, M.S. Choi, J. Song, J. Kim, Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces. Nat. Commun. 6, 8035 (2015).  https://doi.org/10.1038/ncomms9035, http://www.nature.com/doifinder/10.1038/ncomms9035
  51. 51.
    M. Honig, J.A. Sulpizio, J. Drori, A. Joshua, E. Zeldov, S. Ilani, Local electrostatic imaging of striped domain order in LaAlO\(_3\)/SrTiO\(_3\). Nat. Mater. 12(12), 1112–1118 (2013).  https://doi.org/10.1038/nmat3810, http://www.nature.com/doifinder/10.1038/nmat3810
  52. 52.
    S. Banerjee, O. Erten, M. Randeria, Ferromagnetic exchange, spinorbit coupling and spiral magnetism at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Phy. 9(10), 626–630 (2013).  https://doi.org/10.1038/nphys2702, http://www.nature.com/doifinder/10.1038/nphys2702
  53. 53.
    C.S. Koonce, M.L. Cohen, J.F. Schooley, W.R. Hosler, E.R. Pfeiffer, Superconducting transition temperatures of semiconducting SrTiO\(_3\). Phy. Rev. 163(2), 380–390 (1967).  https://doi.org/10.1103/PhysRev.163.380
  54. 54.
    J.F. Schooley, W.R. Hosler, M.L. Cohen, Superconductivity in Semiconducting SrTiO\(_3\). Physical Review Letters 12(17), 474–475 (1964).  https://doi.org/10.1103/PhysRevLett.12.474, http://link.aps.org/doi/10.1103/PhysRevLett.12.474CrossRefGoogle Scholar
  55. 55.
    E.R. Pfeiffer, J.F. Schooley, Superconducting transition temperature of Nb-doped SrTiO\(_3\). Phy. Lett. 29A(10), 589–590 (1969)CrossRefGoogle Scholar
  56. 56.
    Y. Kozuka, M. Kim, C. Bell, B.G. Kim, Y. Hikita, H.Y. Hwang, Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462(7272), 487–490 (2009).  https://doi.org/10.1038/nature08566CrossRefGoogle Scholar
  57. 57.
    J. Nishimura, A. Ohtomo, A. Ohkubo, Y. Murakami, M. Kawasaki, Controlled carrier generation at a polarity-discontinued perovskite heterointerface. Jpn. J. Appl. Phy. 43(8A), L1032–L1034 (2004).  https://doi.org/10.1143/JJAP.43.L1032, http://stacks.iop.org/1347-4065/43/L1032CrossRefGoogle Scholar
  58. 58.
    G. Binnig, A. Baratoff, H.E. Hoenig, J.G. Bednorz, Two-band Superconductivity in Nb-Doped SrTiO\(_3\). Phys. Rev. Lett. 45(15), 1352–1355 (1980)CrossRefGoogle Scholar
  59. 59.
    C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L.F. Kourkoutis, D.A. Muller, J.R. Kirtley, C.W. Schneider, J. Mannhart, Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502(7472), 528–531 (2013).  https://doi.org/10.1038/nature12494CrossRefGoogle Scholar
  60. 60.
    H. Boschker, C. Richter, E. Fillis-Tsirakis, C.W. Schneider, J. Mannhart, Electronphonon coupling and the superconducting phase diagram of the LaAlO\(_3\)-SrTiO\(_3\) interface. Sci. Rep. 5(12309) (2015).  https://doi.org/10.1038/srep12309
  61. 61.
    G.N. Daptary, S. Kumar, P. Kumar, A. Dogra, N. Mohanta, A. Taraphder, A. Bid, Correlated non-Gaussian phase fluctuations in LaAlO\(_3\)/SrTiO\(_3\) heterointerfaces. Phy. Rev. B 94(8), 085104 (2016).  https://doi.org/10.1103/PhysRevB.94.085104, http://link.aps.org/doi/10.1103/PhysRevB.94.085104
  62. 62.
    T. Schneider, S. Weyeneth, Suppression of the Berezinskii-Kosterlitz-Thouless and quantum phase transitions in two-dimensional superconductors by finite-size effects. Phy. Rev. B 90(6), 064501 (2014).  https://doi.org/10.1103/PhysRevB.90.064501, http://link.aps.org/doi/10.1103/PhysRevB.90.064501
  63. 63.
    B.S. Chandrasekhar, A note on the maximum critical field of high field superconductors. Appl. Phy. Lett. 1(1), 7–8 (1962)CrossRefGoogle Scholar
  64. 64.
    A.M. Clogston, Upper limit for the critical field in hard superconductors. Phy. Rev. Lett. 9(6), 266–267 (1962).  https://doi.org/10.1103/PhysRevLett.9.266, http://link.aps.org/doi/10.1103/PhysRevLett.9.266CrossRefGoogle Scholar
  65. 65.
    K. Michaeli, A.C. Potter, P.A. Lee, Superconducting and ferromagnetic phases in LaAlO\(_3\)/SrTiO\(_3\) oxide interface structures: possibility of finite momentum pairing. Phy. Rev. Lett. 108(11), 117003 (2012).  https://doi.org/10.1103/PhysRevLett.108.117003, http://link.aps.org/doi/10.1103/PhysRevLett.108.117003
  66. 66.
    S. Gariglio, M. Gabay, J.M. Triscone, Research update: conductivity and beyond at the LaAlO\(_3\)/SrTiO\(_3\) interface. APL Mater. 4(6), 060701 (2016).  https://doi.org/10.1063/1.4953822
  67. 67.
    S. Hurand, A. Jouan, C. Feuillet-Palma, G. Singh, J. Biscaras, E. Lesne, N. Reyren, A. Barthélémy, M. Bibes, J.E. Villegas, C. Ulysse, X. Lafosse, M. Pannetier-Lecoeur, S. Caprara, M. Grilli, J. Lesueur, N. Bergeal, Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO\(_3\)/SrTiO\(_3\) devices. Sci. Rep. 5(12751) (2015).  https://doi.org/10.1038/srep12751
  68. 68.
    P.D. Eerkes, W.G. van der Wiel, H. Hilgenkamp, Modulation of conductance and superconductivity by top-gating in LaAlO\(_3\)/SrTiO\(_3\) 2-dimensional electron systems. Appl. Phy. Lett. 103(20), 201603 (2013).  https://doi.org/10.1063/1.4829555, http://scitation.aip.org/content/aip/journal/apl/103/20/10.1063/1.4829555
  69. 69.
    M. Hosoda, Y. Hikita, H.Y. Hwang, C. Bell: Transistor operation and mobility enhancement in top-gated LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Appl. Phy. Lett. 103(10), 103507 (2013).  https://doi.org/10.1063/1.4820449, http://scitation.aip.org/content/aip/journal/apl/103/10/10.1063/1.4820449
  70. 70.
    G. Cheng, P.F. Siles, F. Bi, C. Cen, D.F. Bogorin, C.W. Bark, C.M. Folkman, J.W. Park, C.B. Eom, G. Medeiros-Ribeiro, J. Levy, Sketched oxide single-electron transistor. Nat. Nanotechnol. 6(6), 343–347 (2011).  https://doi.org/10.1038/nnano.2011.56, http://www.nature.com/doifinder/10.1038/nnano.2011.56CrossRefGoogle Scholar
  71. 71.
    D. Stornaiuolo, S. Gariglio, A. Fête, M. Gabay, D. Li, D. Massarotti, J.M. Triscone, Weak localization and spin-orbit interaction in side-gate field effect devices at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phy. Rev. B 90(23), 235426 (2014).  https://doi.org/10.1103/PhysRevB.90.235426, http://link.aps.org/doi/10.1103/PhysRevB.90.235426
  72. 72.
    Y. Xie, Y. Hikita, C. Bell, H.Y. Hwang, Control of electronic conduction at an oxide heterointerface using surface polar adsorbates. Nat. Commun. 2, 494 (2011).  https://doi.org/10.1038/ncomms1501CrossRefGoogle Scholar
  73. 73.
    J. Biscaras, S. Hurand, C. Feuillet-Palma, A. Rastogi, R.C. Budhani, N. Reyren, E. Lesne, J. Lesueur, N. Bergeal, Limit of the electrostatic doping in two-dimensional electron gases of LaXO\(_3\)(X = Al, Ti)/SrTiO\(_3\). Sci. Rep. 4, 6788 (2014).  https://doi.org/10.1038/srep06788
  74. 74.
    Z. Liu, C. Li, W. Lü, X. Huang, Z. Huang, S. Zeng, X. Qiu, L. Huang, A. Annadi, J. Chen et al., Origin of the two-dimensional electron gas at laalo\(_3\)/srtio\(_3\) interfaces: the role of oxygen vacancies and electronic reconstruction. Phy. Rev. X 3(2), 021010 (2013)Google Scholar
  75. 75.
    C.W. Schneider, S. Thiel, G. Hammerl, C. Richter, J. Mannhart, Microlithography of electron gases formed at interfaces in oxide heterostructures. Appl. Phy. Lett. 89(12), 122101–122101 (2006)CrossRefGoogle Scholar
  76. 76.
    D. Stornaiuolo, S. Gariglio, N. Couto, A. Fete, A. Caviglia, G. Seyfarth, D. Jaccard, A. Morpurgo, J.M. Triscone, In-plane electronic confinement in superconducting LaAlO\(_3\)/SrTiO\(_3\) nanostructures. Appl. Phy. Lett. 101(22), 222601 (2012)Google Scholar
  77. 77.
    C. Cen, S. Thiel, J. Mannhart, J. Levy, Oxide Nanoelectronics on Demand. Science 323(5917), 1026–1030 (2009).  https://doi.org/10.1126/science.1168294CrossRefGoogle Scholar
  78. 78.
    C. Cen, S. Thiel, G. Hammerl, C. Schneider, K. Andersen, C. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7(4), 298–302 (2008)CrossRefGoogle Scholar
  79. 79.
    Y. Xie, C. Bell, Y. Hikita, H.Y. Hwang, Tuning the electron gas at an oxide heterointerface via free surface charges. Adv. Mater. 23(15), 1744–1747 (2011)CrossRefGoogle Scholar
  80. 80.
    F. Bi, D.F. Bogorin, C. Cen, C.W. Bark, J.W. Park, C.B. Eom, J. Levy, “water-cycle” mechanism for writing and erasing nanostructures at the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phy. Lett. 97, 173110 (2010)Google Scholar
  81. 81.
    N. Reyren, M. Bibes, E. Lesne, J.M. George, C. Deranlot, S. Collin, A. Barthélémy, H. Jaffrès, Gate-controlled spin injection at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Phy. Rev. Lett. 108(18), 186802 (2012).  https://doi.org/10.1103/PhysRevLett.108.186802, http://link.aps.org/doi/10.1103/PhysRevLett.108.186802
  82. 82.
    A.G. Swartz, S. Harashima, Y. Xie, D. Lu, B. Kim, C. Bell, Y. Hikita, H.Y. Hwang, Spin-dependent transport across Co/LaAlO\(_3\)/SrTiO\(_3\) heterojunctions. Appl. Phy. Lett. 105(3), 032406 (2014).  https://doi.org/10.1063/1.4891174, http://scitation.aip.org/content/aip/journal/apl/105/3/10.1063/1.4891174
  83. 83.
    W. Han, X. Jiang, A. Kajdos, S.h. Yang, S. Stemmer, S.S.P. Parkin, Spin injection and detection in lanthanum- and niobium-doped SrTiO\(_3\) using the Hanle technique. Nat. Commun. 4, 1–6 (2013).  https://doi.org/10.1038/ncomms3134
  84. 84.
    A.M. Kamerbeek, E.K. de Vries, A. Dankert, S.P. Dash, B.J. van Wees, T. Banerjee, Electric field effects on spin accumulation in Nb-doped SrTiO\(_3\) using tunable spin injection contacts at room temperature. Appl. Phy. Lett. 104(21), 212106 (2014).  https://doi.org/10.1063/1.4880895, http://scitation.aip.org/content/aip/journal/apl/104/21/10.1063/1.4880895
  85. 85.
    E. Lesne, Y. Fu, S. Oyarzun, J.C. Rojas-Sanchez, D.C. Vaz, H. Naganuma, G. Sicoli, J.P. Attané, M. Jamet, E. Jacquet, J.M. George, A. Bathélémy, H. Jaffrès, A. Fert, M. Bibes, L. Vila, Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261 (2016).  https://doi.org/10.1038/NMAT4726CrossRefGoogle Scholar
  86. 86.
    C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metalinsulator transition at room temperature. Nat. Mater. 7(4), 298–302 (2008).  https://doi.org/10.1038/nmat2136, http://www.nature.com/doifinder/10.1038/nmat2136CrossRefGoogle Scholar
  87. 87.
    D. Stornaiuolo, S. Gariglio, N.J.G. Couto, A. Fete, A.D. Caviglia, G. Seyfarth, D. Jaccard, A.F. Morpurgo, J.M. Triscone, In-plane electronic confinement in superconducting LaAlO\(_3\)/SrTiO\(_3\) nanostructures. Appl. Phy. Lett. 101(22), 222601 (2012).  https://doi.org/10.1063/1.4768936, http://scitation.aip.org/content/aip/journal/apl/101/22/10.1063/1.4768936
  88. 88.
    B. Forg, C. Richter, J. Mannhart, Field-effect devices utilizing LaAlO\(_3\)/SrTiO\(_3\) interfaces. Appl. Phys. Lett. 100(5), 053506 (2012).  https://doi.org/10.1063/1.3682102, http://scitation.aip.org/content/aip/journal/apl/100/5/10.1063/1.3682102CrossRefGoogle Scholar
  89. 89.
    R. Jany, C. Richter, C. Woltmann, G. Pfanzelt, B. Förg, M. Rommel, T. Reindl, U. Waizmann, J. Weis, J.A. Mundy, D.A. Muller, H. Boschker, J. Mannhart, Monolithically integrated circuits from functional oxides. Adv. Mater. Interfaces 1(1), 1300031 (2014).  https://doi.org/10.1002/admi.201300031, http://doi.wiley.com/10.1002/admi.201300031CrossRefGoogle Scholar
  90. 90.
    C. Woltmann, T. Harada, H. Boschker, V. Srot, P.A. van Aken, H. Klauk, J. Mannhart, Field-effect transistors with submicrometer gate lengths fabricated from LaAlO\(_3\)-SrTiO\(_3\)-based heterostructures. Phy. Rev. Appl. 4(6), 064003 (2015).  https://doi.org/10.1103/PhysRevApplied.4.064003, http://link.aps.org/doi/10.1103/PhysRevApplied.4.064003
  91. 91.
    A. Tebano, E. Fabbri, D. Pergolesi, G. Balestrino, E. Traversa, Room-temperature in SrTiO\(_3\)/LaAlO\(_3\) heterostructures. ACS Nano 6(2), 1278–1283 (2012).  https://doi.org/10.1021/nn203991qCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. M. R. V. L. Monteiro
    • 1
  • A. D. Caviglia
    • 1
  • N. Reyren
    • 2
  1. 1.Kavli Institute of Nanoscience Delft University of TechnologyDelftThe Netherlands
  2. 2.Unité Mixte de Physique, CNRS, ThalesUniv. Paris-Sud, Université Paris-SaclayPalaiseauFrance

Personalised recommendations