Skip to main content

Rooftop Siting of a Small Wind Turbine Using a Hybrid BEM-CFD Model

  • Conference paper
  • First Online:
Wind Energy Exploitation in Urban Environment (TUrbWind 2017)

Part of the book series: Green Energy and Technology ((GREEN))

  • 730 Accesses

Abstract

The benefits of wind turbine rooftop installations are related to the exploitation both of a higher elevation within the atmospheric boundary layer and of possible local accelerated flows originated by the interaction between the wind and the surrounding landscape. The selection of the proper turbine positioning is however pivotal to ensure maximized energy yields. Although the complete solution of the flow field surrounding the rotors would lead to most accurate results, lower-fidelity models with a more affordable computational cost are still about to be preferable for multivariate optimization analyses. In this study, a set of simulations using a hybrid BEM-CFD model were carried out to optimize the siting of a small HAWT in the rooftop of a suburban building. The parametric study on the urban landscape and the turbine positioning showed that the proposed approach hybrid approach provides interesting prospects in view of more energy-efficient urban installations of wind turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABL:

Atmospheric Boundary Layer

ADM:

Actuator Disk Model

BEM:

Blade Element Momentum

CFD:

Computational Fluid Dynamics

C µ :

Turbulence model constant

C p :

Power coefficient

C s :

Roughness constant

d :

Displacement (m)

D :

Distance between UB and IB (m)

h :

UB height (m)

H :

IB height (m)

Ĥ :

Mean buildings height (m)

HAWT:

Horizontal Axis Wind Turbine

K s :

Sand-grain roughness (m)

k :

Turbulent kinetic energy (m2/s2)

IB:

Installation Building

L :

Buildings width (m)

P :

Turbine power (W)

R :

Turbine radius (m)

R 2 :

Coefficient of determination

RANS:

Reynolds-Averaged Navier-Stokes

TSR:

Tip-Speed Ratio

UB:

Upwind Building

u* :

Friction velocity (m/s)

V :

Flow velocity (m/s)

VAWT:

Vertical Axis Wind Turbine

VBM:

Virtual Blade Model

y p :

Height of the ground cells centroid (m)

z 0 :

Roughness length (m)

γ :

Skew angle (deg)

ε :

Turbulent kinetic energy dissipation rate (m2/s3)

κ :

Von Karman constant

ω :

Specific turbulence dissipation rate (s−1)

References

  1. Ledo, L., Kosasih, P.B., Cooper, P.: Roof mounting site analysis for micro-wind turbines. Renew. Energy 36(5), 1379–1391 (2011)

    Article  Google Scholar 

  2. Abohela, I., Hamza, N., Dudek, S.: Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renew. Energy 50, 1106–1118 (2013)

    Article  Google Scholar 

  3. Herrmann-Priesnitz, B., Calderón-Muñoz, W.R., LeBoeuf, R.: Effects of urban configuration on the wind energy distribution over a building. J. Renew. Sustain. Energy 7(3), 033106 (2015)

    Article  Google Scholar 

  4. Balduzzi, F., Bianchini, A., Ferrari, L.: Microeolic turbines in the built environment: influence of the installation site on the potential energy yield. Renew. Energy 45, 163–174 (2012)

    Article  Google Scholar 

  5. Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L., Magnani, S.: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 97, 921–929 (2012)

    Article  Google Scholar 

  6. Bianchi, S., Bianchini, A., Ferrara, G., Ferrari, L.: Small wind turbines in the built environment: influence of flow inclination on the potential energy yield. J. Turbomach. 136(4), 041013-041013-8 (2013)

    Google Scholar 

  7. Schily, F., Paraschivoiu, M.: CFD Study of a Savonius wind turbine on a rooftop. In: CFDSC, Waterloo, ON (2015)

    Google Scholar 

  8. Zanforlin, S., Letizia, S.: Improving the performance of wind turbines in urban environment by integrating the action of a diffuser with the aerodynamics of the rooftops. Energy Procedia 82, 774–781 (2015)

    Article  Google Scholar 

  9. Micallef, D., Sant, T., Ferreira, C.: The influence of a cubic building on a roof mounted wind turbine. In: Science of Making Torque from Wind, TORQUE 2016, Munich (2016)

    Google Scholar 

  10. Bianchini, A., Balduzzi, F., Gentiluomo, D., Ferrara, G., Ferrari, L.: Comparative analysis of different numerical techniques to analyze the wake of a wind turbine. In: ASME Turbo Expo 2017, June 26–30, Charlotte, USA (2017)

    Google Scholar 

  11. Bianchini, A., Balduzzi, F., Gentiluomo, D., Ferrara, G., Ferrari, L.: Potential of the virtual blade model in the analysis of wind turbine wakes using wind tunnel blind tests. Energy Procedia (2017) (paper in publishing)

    Google Scholar 

  12. Mertens, S.: Wind Energy in the Built Environment. Multi-Science, Brentwood (2006)

    Google Scholar 

  13. Cebeci, T., Bradshaw, P.: Momentum Transfer in Boundary Layers. Hemisphere Publishing, New York (1977)

    MATH  Google Scholar 

  14. Blocken, B., Stathopoulos, T., Carmeliet, J.: CFD simulation of the atmospheric boundary layer: wall function problems. Atmos. Environ. 41(2), 238–252 (2007)

    Article  Google Scholar 

  15. Leitl, B., Shatzmann, M.: Compilation of Experimental Data for Validation of Microscale Dispersion Model. CEDVAL, Meteorological Institute, Hamburg University, Hamburg (1998)

    Google Scholar 

  16. Richards, P.J., Hoxey, R.P.: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. J. Wind Eng. Ind. Aerodyn. 46, 145–153 (1993)

    Article  Google Scholar 

  17. Laith, Z., Rajagopalan, R.: Navier-Stokes calculations of rotor-airframe interaction in forward flight. J. Am. Helicopter Soc. 40(2), 57–67 (1995)

    Article  Google Scholar 

  18. Javaherchi Mozafari, A.T.: Numerical modeling of tidal turbines: methodology development and potential physical environmental effects. M.Sc. Thesis in Mechanical Engineering, University of Washington (2010)

    Google Scholar 

  19. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: Wind Energy Handbook. Wiley, Oxford (2001)

    Book  Google Scholar 

  20. Cerisola, A.: Numerical analysis of tidal turbines using virtual blade model and single rotating reference frame. Technical report, University of Washington (2012)

    Google Scholar 

  21. Du, Z., Selig, M.S.: A 3-D stall-delay model for horizontal axis wind turbines performance prediction. In: ASME Wind Energy Symposium, January 12–15, Reno, Nevada, paper no AIAA-98-0021 (1998)

    Google Scholar 

  22. Andersen, B.: Wake behind a wind turbine operating in yaw. M.Sc. thesis, NTNU, Trondheim, Norway (2013)

    Google Scholar 

  23. Tominaga, T., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., Shirawasa, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 96, 1749–1761 (2008)

    Article  Google Scholar 

  24. Mertens, S.: The energy yield of roof mounted wind turbines. Wind Eng. 27(6), 507–517 (2003)

    Article  Google Scholar 

  25. Ratti, C., Di Sabatino, S., Caton, F., Britter, R., Brown, M.: Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities. Water Air Soil Pollut. 2, 459–469 (2002)

    Article  Google Scholar 

  26. Martin, C.L., Longley, I.D., Dorsey, J.R., Thomas, J.R., Gallagher, M.W., Nemitz, E.: Ultrafine particle fluxes above four major European cities. Atmos. Environ. 43, 4714–4721 (2009)

    Article  Google Scholar 

  27. Engineering Science Data Unit: Strong Winds in the Atmospheric Boundary Layer, Part 1: Mean-Hourly Wind Speeds. ESDU 82026 with Amendment A and B, London (1984)

    Google Scholar 

  28. Franke, J., Hirsch, C., Jensen, A.G., Krüs, H.W., Schatzmann, M., Westbury, P.S., Miles, S.D., Wisse, J.A., Wright, N.G.: Recommendations on the use of CFD in wind engineering. In: International Conference on Urban Wind Engineering and Building Aerodynamics, von Karman Institute, Sint-Genesius-Rode, Belgium (2004)

    Google Scholar 

  29. Franke, J., Hellsten, A., Schlünzen, H., Carissimo, B.: Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment. COST Office, Brussels (2007)

    Google Scholar 

  30. Mandel, J.: The Statistical Analysis of Experimental Data. Dover Publications, New York (1984)

    Google Scholar 

Download references

Acknowledgements

The activity presented in the paper is part of the research grant assigned to Dr. Francesco Balduzzi by the Fondazione Cassa di Risparmio di Firenze, which is sincerely acknowledged for its invaluable effort is sustaining the university research. Thanks are due to Prof. Ennio Antonio Carnevale of the University of Florence for supporting this activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Balduzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balduzzi, F., Bianchini, A., Gentiluomo, D., Ferrara, G., Ferrari, L. (2018). Rooftop Siting of a Small Wind Turbine Using a Hybrid BEM-CFD Model. In: Battisti, L., Ricci, M. (eds) Wind Energy Exploitation in Urban Environment. TUrbWind 2017. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-74944-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74944-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74943-3

  • Online ISBN: 978-3-319-74944-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics