Advertisement

Energy-Yield-Based Optimization of a H-Darrieus Wind Turbine in Skewed Flow

  • A. BianchiniEmail author
  • F. Balduzzi
  • G. Ferrara
  • L. Ferrari
Conference paper
  • 503 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

Recent experiments and theoretical models showed that the aerodynamic performance of H-Darrieus wind turbines can even be enhanced in case of moderate skew angles, which are typical of installations in the urban environment. In this study, a design procedure oriented to the maximization of the annual energy yield in skewed flow, instead of the maximum rated power, was carried out. 14400 test cases of H-Darrieus rotors were simulated with a numerical code based on a Blade Element Momentum approach, including an in-house model to account for the skewed flow, and compared on the basis of their energy-yield capabilities for different annual wind distributions. The analysis highlighted that the optimal design configurations in skewed flow significantly differ from the corresponding ones in case of aligned flow and also that a design oriented to the maximum energy-yield in skewed flow can make H-Darrieus rotors competitive for urban installations in comparison to HAWTs.

Keywords

Darrieus Wind turbine Skewed flow Energy yield BEM 

List of Symbols and Abbreviations

A

Area (m2)

a

Induction Factor

AR

Aspect Ratio

BEM

Blade Element Momentum

c

Blade Chord (m)

cP

Power Coefficient

D

Turbine Diameter (m)

F

Force (N)

f

Frequency

H

Turbine Height (m)

HAWT

Horizontal Axis Wind Turbine

m

Mass (kg)

N

Blades/Struts Number

P

Power (W)

R

Turbine Outer Radius (m)

Re

Reynolds Number

T

Annual Time of each Wind Class (h)

Tpar

Parasitic Torque of the Struts (Nm)

t

Airfoil Thickness (m)

TSR

Tip-Speed Ratio

u

Wind Class (m/s)

U

Wind Speed (m/s)

U

Wind Speed at Infinite (m/s)

Ū

Average Wind Speed (m/s)

VAWT

Vertical Axis Wind Turbine

w

Relative Wind Speed (m/s)

Superscripts

*

Per Unit Area

Vectorial Quantity

Subscripts

air

Air

b

Blade

en

Energy

lim

Limit

res

Resistant Component

ST

Struts

Greek Letters

Φ

Turbine Shape Factor

γ

Skew Angle (deg)

ηen

Energy-conversion Efficiency

ϑ

Azimuthal Angle (deg)

ν

Kinematic Viscosity (m2/s)

ξ

Chord/Diameter Ratio

ρ

Density (kg/m3)

σ

Solidity

ϛ

Structural Stress (N/m2)

ω

Rotational Speed (rad/s)

Notes

Acknowledgements

Thanks are due to Prof. Ennio Antonio Carnevale of the University of Florence for supporting this research activity.

References

  1. 1.
  2. 2.
    WWEA: 2016 Small Wind World Report. Technical report, Washington DC, USA (2016)Google Scholar
  3. 3.
    Colak, I., Fulli, G., Bayhan, S., Chondrogiannis, S., Demirbas, S.: Critical aspects of wind energy systems in smart grid applications. Renew. Sustain. Energy Rev. 52, 155–171 (2015)CrossRefGoogle Scholar
  4. 4.
    Kaldellis, J.K.: Optimum autonomous wind–power system sizing for remote consumers, using long-term wind speed data. Appl. Energy 71, 215–218 (2002)CrossRefGoogle Scholar
  5. 5.
    Proietti, S., Sdringola, P., Castellani, F., Garinei, A., Astolfi, D., Piccioni, E., Desideri, U., Vuillermoz, E.: On the possible wind energy contribution for feeding a high altitude smart mini grid. Energy Proc. 75, 1072–1079 (2015)CrossRefGoogle Scholar
  6. 6.
    AWEA: Small & Community Wind. Technical report (2016)Google Scholar
  7. 7.
    Mertens, S.: The energy yield of roof mounted wind turbines. Wind Eng. 27(6), 507–517 (2003)CrossRefGoogle Scholar
  8. 8.
    Dayan, E.: Wind energy in buildings: power generation from wind in the urban environment—where it is needed most. Refocus 72(2), 33–38 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Balduzzi, F., Bianchini, A., Ferrari, L.: Microeolic turbines in the built environment: influence of the installation site on the potential energy yield. Renew. Energy 45, 163–174 (2012)CrossRefGoogle Scholar
  10. 10.
    Mertens, S.: Wind Energy in the Built Environment. Multi-Science, Brentwood, UK (2006)Google Scholar
  11. 11.
    Paraschivoiu, I.: Wind Turbine Design with Emphasis on Darrieus Concept. Polytechnic International Press, Canada (2002)Google Scholar
  12. 12.
    Aslam Bhutta, M.M., Hayat, N., Farooq, A.U., Ali, Z., Jamil, Sh.R., Hussain, Z.: Vertical axis wind turbine—a review of various configurations and design techniques. Renew. Sustain. Energy Rev. 16(4), 1926–1939 (2012)Google Scholar
  13. 13.
    Sharpe, T., Proven, G.: Crossflex: concept and early development of a true building integrated wind turbine. Energy Build. 42, 2365–2375 (2010)CrossRefGoogle Scholar
  14. 14.
    Mertens, S., van Kuik, G., van Bussel, G.: Performance of an H-Darrieus in the skewed flow on a roof. J. Sol. Energy Eng. 125, 433–440 (2003)CrossRefGoogle Scholar
  15. 15.
    Bianchini, A., Ferrari, L., Magnani, S.: On the effects of a skewed flow on the performance of a three-bladed H-Darrieus turbine: experimental and theoretical analyses. In: Proceedings of the International Conference on Applied Energy (ICAE) 2012, Suzhou (China), July, pp. 5–8 (2012)Google Scholar
  16. 16.
    Simão Ferreira, C.J., van Bussel, G., van Kuik, G.: An analytical method to predict the variation in performance of a H-Darrieus in skewed flow and its experimental validation. In: Proceedings of the European Wind Energy Conference, Athens, Greece (2006)Google Scholar
  17. 17.
    Bianchini, A., Ferrara, G., Ferrari, L., Magnani, S.: An improved model for the performance estimation of an H-Darrieus wind turbine in skewed flow. Wind Eng. 36(6), 667–686 (2012)CrossRefGoogle Scholar
  18. 18.
    Bianchi, S., Bianchini, A., Ferrara, G., Ferrari, L.: Small wind turbines in the built environment: influence of flow inclination on the potential energy yield. J. Turbomach. 136(4), 1–9 (2014)Google Scholar
  19. 19.
    Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L., Magnani, S.: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 97, 921–929 (2012)CrossRefGoogle Scholar
  20. 20.
    Borg, M., Shires, A., Collu, M.: Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: aerodynamics. Renew. Sustain. Energy Rev. 39, 1214–1225 (2014)CrossRefGoogle Scholar
  21. 21.
    Bianchini, A., Ferrari, L., Magnani, S.: Energy-yield-based optimization of an H-Darrieus wind turbine. In: Proceedings of the ASME Turbo Expo 2012, Copenhagen, Denmark, June, pp. 11–15 (2012)Google Scholar
  22. 22.
    Beller, C.: Urban wind energy—state of the art 2009, Risø Laboratory—DTU, Roskilde, Denmark, Technical report Risø-R-1668 (EN) (2009)Google Scholar
  23. 23.
    Manwell, J.F., McGowan, J.G., Rogers A.L: Wind Energy Explained, 2nd edn. Wiley, UK (2009)Google Scholar
  24. 24.
    Banks, D., Cochran, B., Denoon, R., Wood, G.: Harvesting wind power from tall buildings. In: Proceedings of the CTBUH 8th World Congress, Dubai (UAE) (2008); In: Chicago: Council on Tall Buildings and Urban Habitat, pp. 320–327 (2008)Google Scholar
  25. 25.
    Bianchini, A., Ferrara, G., Ferrari, L.: Design guidelines for H-Darrieus wind turbines: optimization of the annual energy yield. Energy Convers. Manag. 89, 690–707 (2015)CrossRefGoogle Scholar
  26. 26.
    Islam, M.R., Saidur, R., Rahim, N.A.: Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy 36(2), 985–992 (2011)CrossRefGoogle Scholar
  27. 27.
    Ferrari, L., Bianchini, A.: Critical aspects in the design of a small-size Darrieus wind turbine. In: Proceedings of the World Renewable Energy Congress (WREC) XI, Abu Dhabi, UAE, Sept, pp. 25–30 (2010)Google Scholar
  28. 28.
    Bianchini, A., Balduzzi, F., Rainbird, J., Peiro, J., Graham, J.M.R., Ferrara, G., Ferrari, L.: On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines. Energy Convers. Manag. 106(December 2015), 373–384 (2015)Google Scholar
  29. 29.
    Bianchini, A., Balduzzi, F., Rainbird, J., Peiro, J., Graham, J.M.R., Ferrara, G., Ferrari, L.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines. Part 1—Flow Curvature Effects. J. Eng. Gas Turbines Power 138(3), 1–10 (2015)Google Scholar
  30. 30.
    Bianchini, A.: Performance analysis and optimization of a Darrieus VAWT. PhD Thesis, School of Energy Engineering and Innovative Industrial Technologies, University of Florence, Italy (2011)Google Scholar
  31. 31.
    Bianchini, A., Cangioli, F., Papini, S., Rindi, A., Carnevale, E.A., Ferrari, L.: Structural analysis of a small H-Darrieus wind turbine using beam models: development and assessment. J. Turbomach. 137(1), 1–11 (2015)Google Scholar
  32. 32.
    Paraschivoiu, I., Delclaux, F.: Double multiple streamtube model with recent improvements. J. Energy 7(3), 250–255 (1983)CrossRefGoogle Scholar
  33. 33.
    Bianchini, A., Balduzzi, F., Ferrara, G., Ferrari, L.: Critical analysis of dynamic stall models in low-order simulation models for vertical-axis wind turbines. Energy Proc. 101, 488–495 (2016)CrossRefGoogle Scholar
  34. 34.
    Jones, R.T., Cohen, D.: Aerodynamics of wings at high speeds. In: Donovan, A.F., Lawrence, H.R. (eds.) Aerodynamic Components of Aircraft at High Speeds, High Speed Aerodynamics and Jet Propulsion, vol. VII. Princeton University Press, Princeton, USA (1957)Google Scholar
  35. 35.
    Bianchini, A., Balduzzi, F., Bachant, P., Ferrara, G., Ferrari, L.: Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. J. Energy Convers. Manag. 136, 318–328 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Bianchini
    • 1
    Email author
  • F. Balduzzi
    • 1
  • G. Ferrara
    • 1
  • L. Ferrari
    • 2
  1. 1.Department of Industrial Engineering (DIEF)Università degli Studi di FirenzeFlorenceItaly
  2. 2.Department of Energy, Systems, Territory and Construction Engineering (DESTEC)University of PisaPisaItaly

Personalised recommendations