Skip to main content

Experimental and Numerical Wind-Resource Assessment of an University Campus Site

  • Conference paper
  • First Online:
Wind Energy Exploitation in Urban Environment (TUrbWind 2017)

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

During a 3 year research project funded by the local government of Baden-Württemberg, Germany, the potential of wind-energy production was studied at the university campus of Tübingen, a town in the south-west of Germany. The 3D wind field was studied both experimentally and numerically in order to identify optimal locations for small wind turbine installation. Within the scope of this project, a full-scale field experiment and RANS (Reynolds Averaged Navier-Stokes) models were applied in order to yield a better understanding of the airflow around the buildings. We validate our CFD predictions of the flow field with wind-speed measurements using ultrasonic anemometers at several stations within the campus. The simulation results (in direct comparison with the measured data) improved greatly when trees were explicitly considered using a simple canopy model at the inflow boundary. This study is intended to support and guide the next steps of the wind resources assessment at similar sites. We gladly offer our site, instrumentation and (simulated and measured) data to other groups that perform urban wind energy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayachit, U.: The paraview guide: a parallel visualization application (2015)

    Google Scholar 

  2. Bailey, B.H., McDonald, S.L., Bernadett, D., Markus, M., Elsholz, K.: Wind resource assessment handbook: fundamentals for conducting a successful monitoring program. Tech. rep., National Renewable Energy Lab., Golden, CO (US); AWS Scientific, Inc., Albany, NY (US) (1997)

    Google Scholar 

  3. Blocken, B.: 50 years of computational wind engineering: past, present and future. J. Wind Energy Ind. Aerodyn. 129, 69–102 (2014)

    Article  Google Scholar 

  4. Blocken, B., Gualtieri, C.: Ten iterative steps for mode development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Env. Model. Softw. 33, 1–22 (2012)

    Article  Google Scholar 

  5. Cescatti, A., Marcolla, B.: Drag coefficient and turbulence intensity in conifer canopies. Agric. For. Meteorol. 121, 197–206 (2004)

    Article  Google Scholar 

  6. Franke, J., Hellsten, A., Schlnzen, H., Carissimo, B.: The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. Int. J. Env. Pollut. 44, 419–427 (2011)

    Article  Google Scholar 

  7. Greens, S., Grace, J., Hutchings, N.: Observations of turbulent air flow in three stands of widely spaced sitka spruce. Agric. For. Meteorol. 74, 205–225 (1996)

    Article  Google Scholar 

  8. Landberg, L., Myllerup, L., Rathmann, O., Petersen, L., Hoffmann Jrgensen, B., Badger, J., Gylling Mortensen, N.: Wind resource estimation—an overview. Wind Energy 6, 261–271 (2003)

    Article  Google Scholar 

  9. Launder, B.E., Spalding, D.: The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. Eng. 3, 269–289 (1974)

    Google Scholar 

  10. Liu, J., Chen, J., Novak, M.: k-epsilon modelling of turbulent air flow downwind of a model forest edge. Bound.-Layer Meteorol. 77, 21–44 (1996)

    Article  Google Scholar 

  11. Meier, I., Leuschner, C.: Leaf size and leaf area index in fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11, 655–669 (2008)

    Article  Google Scholar 

  12. Mochida, A., Tabata, Y., Iwata, T., Yoshino, H.: Examining tree canopy models for CFD predicyion of wind environment at pedestrian level. J. Wind Energy Ind. Aerodyn. 96, 1667–1677 (2008)

    Article  Google Scholar 

  13. Rau, I.M., Bigalke, K.: Synthetische Windstatistiken Baden-Württemberg Hinweise für Anwender. Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (2007)

    Google Scholar 

  14. Richards, P., Hoxey, R.: Appropriate boundary conditions for computational wind engineering models using the k-epsilon turbulence models. J. Wind Energy Ind. Aerodyn. 46–47, 145–153 (1993)

    Article  Google Scholar 

  15. Salim, M.H., Schlnzen, H.K., Grawe, D.: Including trees in the numerical simulations of the wind flow in urban areas: should we care? J. Wind Energy Ind. Aerodyn. 144, 84–95 (2015)

    Article  Google Scholar 

  16. Thimonier, A., Sedivy, I., Schleppi, P.: Estimating leaf area index in different types of mature forest stands in switzerland: a comparison of methods. Eur. J. For. Res. 129, 543–562 (2010)

    Article  Google Scholar 

  17. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., Shirasawa, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Energy Ind. Aerodyn. 96, 1749–1761 (2008)

    Article  Google Scholar 

  18. Walker, S.: Building mounted wind turbines and their suitability for the urban scalea review of methods of estimating urban wind resource. J. Energy Build. 43, 1852–1862 (2013)

    Article  Google Scholar 

  19. Wildmann, N., Hofsäß, M., Weimer, F., Joos, A., Bange, J.: MASC—a small remotely piloted aircraft (RPA) for wind energy research. Adv. Sci. Res. 11, 55–61 (2014)

    Article  Google Scholar 

  20. Wildmann, N., Rau, G., Bange, J.: Observations of the early morning boundary-layer transition with small remotely-piloted aircraft. Bound.-Layer Meteorol. 157(3), 345–373 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science, Research and the Arts of the State of Baden-Württemberg for funding this study, the Geographical Institute of the University of Tübingen for providing terrain data, and the Technical Building Management (TBA) of the University of Tübingen for assisting the experimental part. The computational resources were provided by the bwGRiD Cluster at the University of Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Bahlouli, A., Bange, J. (2018). Experimental and Numerical Wind-Resource Assessment of an University Campus Site. In: Battisti, L., Ricci, M. (eds) Wind Energy Exploitation in Urban Environment. TUrbWind 2017. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-74944-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74944-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74943-3

  • Online ISBN: 978-3-319-74944-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics