Skip to main content

Molecular Cytology Applications on Urine

  • Chapter
  • First Online:
Molecular Applications in Cytology

Abstract

Numerous urine tumor markers have been identified with the goal to improve noninvasive diagnosis of urothelial carcinoma (UC) and decrease the number of costly and uncomfortable cystoscopies. Only few markers have been developed into commercially available diagnostic tests, and the FDA-approved UroVysion fluorescence in situ hybridization test (U-FISH; Abbott Molecular) is most commonly used in cytology laboratories. Though extensively studied in different clinical settings including screening, hematuria evaluation, and surveillance of patients with a history of UC, U-FISH is most useful in patients with equivocal cytology in the setting of a negative or equivocal cystoscopy. The value of ancillary U-FISH in this specific clinico-morphological context has recently been acknowledged by the AUA/SUO (American Urological Association/Society of Urologic Oncology) guidelines. In benign cytology and cytology positive for high-grade UC (HGUC), ancillary U-FISH does not add any clinical benefit but only unnecessary costs. With standardized pre-analytic and analytic procedures and a standardized test evaluation, including the previously proposed optimized definition of a FISH-positive result, U-FISH can help clarify equivocal cytology and may provide clinically relevant results though the value of a U-FISH-guided clinical management needs to be investigated in appropriately designed prospective clinical trials.

With the available high-throughput molecular techniques, it is likely that more sensitive and specific diagnostic, prognostic, and predictive molecular tumor markers will be developed for UC. Crucial for implementation into clinical management will be the validation in prospective clinical trials with protocols including molecular-guided clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E86.

    Article  CAS  Google Scholar 

  2. Moch HPP, Ulbright TM, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. 4th ed. Lyon: IARC; 2016.

    Google Scholar 

  3. Babjuk M, Bohle A, Burger M, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71:447–61.

    Article  PubMed  Google Scholar 

  4. Clinton T, Lotan Y. Review of the clinical approaches to the use of urine-based tumor markers in bladder cancer. Rambam Maimonides Med J. 2017;8:4.

    Article  Google Scholar 

  5. Garbar C, Mascaux C, Wespes E. Is urinary tract cytology still useful for diagnosis of bladder carcinomas? A large series of 592 bladder washings using a five-category classification of different cytological diagnoses. Cytopathology. 2007;18:79–83.

    Article  CAS  PubMed  Google Scholar 

  6. Mowatt G, Zhu S, Kilonzo M, et al. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess. 2010;14:1–331. iii-iv

    Article  CAS  PubMed  Google Scholar 

  7. Li HX, Wang MR, Zhao H, Cao J, Li CL, Pan QJ. Comparison of fluorescence in situ hybridization, NMP22 bladderchek, and urinary liquid-based cytology in the detection of bladder urothelial carcinoma. Diagn Cytopathol. 2013;41:852–7.

    Article  CAS  PubMed  Google Scholar 

  8. Yafi FA, Brimo F, Auger M, Aprikian A, Tanguay S, Kassouf W. Is the performance of urinary cytology as high as reported historically? A contemporary analysis in the detection and surveillance of bladder cancer. Urol Oncol. 2014;32:e1–6.

    Article  Google Scholar 

  9. Schmitz-Drager BJ, Droller M, Lokeshwar VB, et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus. Urol Int. 2015;94:1–24.

    Article  CAS  PubMed  Google Scholar 

  10. Chou R, Gore JL, Buckley D, et al. Urinary biomarkers for diagnosis of bladder cancer: a systematic review and meta-analysis. Ann Intern Med. 2015;163:922–31.

    Article  PubMed  Google Scholar 

  11. Bubendorf L. Multiprobe fluorescence in situ hybridization (UroVysion) for the detection of urothelial carcinoma - FISHing for the right catch. Acta Cytol. 2011;55:113–9.

    Article  CAS  PubMed  Google Scholar 

  12. Dimashkieh H, Wolff DJ, Smith TM, Houser PM, Nietert PJ, Yang J. Evaluation of urovysion and cytology for bladder cancer detection: a study of 1835 paired urine samples with clinical and histologic correlation. Cancer Cytopathol. 2013;121:591–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol. 2016;196:1021–9.

    Article  PubMed  Google Scholar 

  14. Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Youssef RF, Schlomer BJ, Ho R, Sagalowsky AI, Ashfaq R, Lotan Y. Role of fluorescence in situ hybridization in bladder cancer surveillance of patients with negative cytology. Urol Oncol. 2012;30:273–7.

    Article  PubMed  Google Scholar 

  16. Todenhofer T, Hennenlotter J, Guttenberg P, et al. Prognostic relevance of positive urine markers in patients with negative cystoscopy during surveillance of bladder cancer. BMC Cancer. 2015;15:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lotan Y, Bensalah K, Ruddell T, Shariat SF, Sagalowsky AI, Ashfaq R. Prospective evaluation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2008;179:2164–9.

    Article  PubMed  Google Scholar 

  18. Schlomer BJ, Ho R, Sagalowsky A, Ashfaq R, Lotan Y. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2010;183:62–7.

    Article  PubMed  Google Scholar 

  19. Savic S, Zlobec I, Thalmann GN, et al. The prognostic value of cytology and fluorescence in situ hybridization in the follow-up of nonmuscle-invasive bladder cancer after intravesical Bacillus Calmette-Guerin therapy. Int J Cancer. 2009;124:2899–904.

    Article  CAS  PubMed  Google Scholar 

  20. Roupret M, Babjuk M, Comperat E, et al. European association of urology guidelines on upper urinary tract urothelial cell carcinoma: 2015 update. Eur Urol. 2015;68:868–79.

    Article  PubMed  Google Scholar 

  21. Mian C, Mazzoleni G, Vikoler S, et al. Fluorescence in situ hybridisation in the diagnosis of upper urinary tract tumours. Eur Urol. 2010;58:288–92.

    Article  PubMed  Google Scholar 

  22. Skacel M, Fahmy M, Brainard JA, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol. 2003;169:2101–5.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenthal DL, Wojcik E, Kurtycz DFI. The Paris system for reporting urinary cytology. New York: Springer; 2016.

    Book  Google Scholar 

  24. Wang Y, Auger M, Kanber Y, Caglar D, Brimo F. Implementing the Paris system for reporting urinary cytology results in a decrease in the rate of the “atypical” category and an increase in its prediction of subsequent high-grade urothelial carcinoma. Cancer Cytopathol. 2017;126(3):207–14.

    Article  CAS  PubMed  Google Scholar 

  25. Virk RK, Abro S, de Ubago JMM, et al. The value of the UroVysion(R) FISH assay in the risk-stratification of patients with “atypical urothelial cells” in urinary cytology specimens. Diagn Cytopathol. 2017;45:481–500.

    Article  PubMed  Google Scholar 

  26. Wojcik EM, Brownlie RJ, Bassler TJ, Miller MC. Superficial urothelial (umbrella) cells. A potential cause of abnormal DNA ploidy results in urine specimens. Anal Quant Cytol Histol. 2000;22:411–5.

    PubMed  CAS  Google Scholar 

  27. Tapia C, Glatz K, Obermann EC, et al. Evaluation of chromosomal aberrations in patients with benign conditions and reactive changes in urinary cytology. Cancer Cytopathol. 2011;119:404–10.

    Article  PubMed  Google Scholar 

  28. Zhou AG, Liu Y, Cyr MS, et al. Role of Tetrasomy for the diagnosis of urothelial carcinoma using urovysion fluorescent in situ hybridization. Arch Pathol Lab Med. 2016;140:552–9.

    Article  CAS  PubMed  Google Scholar 

  29. Moatamed NA, Apple SK, Bennett CJ, et al. Exclusion of the uniform tetraploid cells significantly improves specificity of the urine FISH assay. Diagn Cytopathol. 2013;41:218–25.

    Article  PubMed  Google Scholar 

  30. Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P. Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol. 2001;116:79–86.

    Article  CAS  PubMed  Google Scholar 

  31. Zellweger T, Benz G, Cathomas G, et al. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer. 2006;119:1660–5.

    Article  CAS  PubMed  Google Scholar 

  32. Bubendorf LCN, Fischer AH, Katz RL, Olson MT, Schmitt F, Stojan Flezar M, Van der Kwast TH, Vielh P. Ancillary studies in urinary cytology. The Paris system for reporting urinary cytology. New York: Springer; 2016.

    Google Scholar 

  33. Layfield LJ, Elsheikh TM, Fili A, Nayar R, Shidham V, Papanicolaou Society of C. Review of the state of the art and recommendations of the Papanicolaou Society of Cytopathology for urinary cytology procedures and reporting : the Papanicolaou Society of Cytopathology Practice Guidelines Task Force. Diagn Cytopathol. 2004;30:24–30.

    Article  PubMed  Google Scholar 

  34. Savic S, Bubendorf L. Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med. 2016;140:1323–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spasenija Savic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savic, S. (2018). Molecular Cytology Applications on Urine. In: Schmitt, F. (eds) Molecular Applications in Cytology. Springer, Cham. https://doi.org/10.1007/978-3-319-74942-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74942-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74940-2

  • Online ISBN: 978-3-319-74942-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics