Skip to main content

Molecular Cytology Applications on the Lung

  • Chapter
  • First Online:
  • 474 Accesses

Abstract

Lung cancer is the leading cause of cancer death in the world. Lung cytopathology is a significant part of the cytopathology practice. Less than 30% of patients with non-small cell lung cancer (NSCLC) are eligible for surgical treatment, and more than 70% of the NSCLCs have only cytological specimens available for molecular analysis. The most frequently used techniques to obtain material are bronchoscopy and fine-needle aspiration (FNA), performed under imaging guidance; EUS-guided FNA is used to stage lung cancer and to study mediastinal lesions. These materials are used to determine the origin and the nature of the lesions and to apply ancillary techniques. The development of molecular heterogeneity in NSCLC has led to the identification of molecular subgroups, which are responsive to target therapies, especially in lung adenocarcinoma that is the most common histological subtype. The clinical relevance of EGFR (epidermal growth factor receptor) and KRAS (Kirsten rat sarcoma viral oncogene) mutational status has been established, and testing these mutations by sequencing or RT-PCR (Reverse transcriptase polymerase chain reaction) methods has become a standard practice. The discovery of ALK (anaplastic lymphoma kinase) translocations and the responsiveness of these tumors to ALK inhibitors have led to study them by FISH (fluorescence in situ hybridization) and RT-PCR. Other genes such as ROS1, RET, and c-Met have been routinely assessed for targeted therapies. Recently the introduction of next-generation sequencing has focused on new gene alterations, although their clinical relevance has not been well established, yet. Recently, gene panels RNA-based to check rearrangements are under evaluation, and probably in future they will be developed also in clinical settings in order to find all molecular alterations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Rekhtman N, Brandt SM, Sigel CS, et al. Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol. 2011;6:451–8.

    Article  PubMed  Google Scholar 

  3. Martini M, Vecchione L, Siena S, et al. Targeted therapies: how personal should we go? Nat Rev Clin Oncol. 2011;9:87–97.

    Article  CAS  PubMed  Google Scholar 

  4. Mitsudomi T. Erlotinib, gefitinib, or chemotherapy for EGFR mutation positive lung cancer? Lancet Oncol. 2011;12:710–1.

    Article  PubMed  Google Scholar 

  5. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Travis WD, Rekhtman N, Riley GJ, et al. Pathologic diagnosis of advanced lung cancer based on small biopsies and cytology: a paradigm shift. J Thorac Oncol. 2010;5(4):411.

    Article  PubMed  Google Scholar 

  7. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, international association for the study of lung cancer, and association for molecular pathology. J Mol Diagn. 2013;15:415–53.

    Google Scholar 

  8. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98:1817–24.

    Article  CAS  PubMed  Google Scholar 

  9. Shepherd FA, Rodrigues Pereira J, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  CAS  PubMed  Google Scholar 

  10. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatinpaclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.

    Article  CAS  PubMed  Google Scholar 

  11. da Cunha Santos G, Saieg MA, Geddie W, et al. EGFR gene status in cytological samples of non small cell lung carcinoma: controversies and opportunities. Cancer Cytopathol. 2011;119:80–91.

    Article  CAS  PubMed  Google Scholar 

  12. Roh MH. The utilization of cytologic fine-needle aspirates of lung cancer for molecular diagnostic testing. J Pathol Transl Med. 2015;49:300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schrump DS, Altorki NK, Henschke CL, et al. Non-small cell lung cancer. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practices of oncology. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 753–810.

    Google Scholar 

  14. Erozan YS, Ramzy I. Specimen collection and processing in pulmonary cytopathology. In: Essentials in cytopathology, vol. 6. Berlin: Springer; 2009. p. 1–7. https://doi.org/10.1007/978-0-387-88888-01.

    Chapter  Google Scholar 

  15. Koss LG. Koss’ diagnostic cytology and its histopathologic bases, vol. 1. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 4–18.

    Google Scholar 

  16. Gupta N, Sekar A, Rajwanshi A. Role of FNAC, fluid specimens, and cell blocks for cytological diagnosis of lung cancer in the present era. J Cytol. 2015;32:217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. da Cunha Santos G, Ko HM, Saieg MA, et al. “The petals and thorns” of ROSE (rapid on-site evaluation). Cancer Cytopathol. 2013;121:4–8.

    Article  PubMed  Google Scholar 

  18. Steinfort DP, Leong TL, Laska IF, et al. Diagnostic utility and accuracy of rapid on site evaluation of bronchoscopic brushings. Eur Respir J. 2015;45:1653–60.

    Article  PubMed  Google Scholar 

  19. Crapanzano JP, Heymann JJ, Monaco S, et al. The state of cell block variation and satisfaction in the era of molecular diagnostics and personalized medicine. CytoJournal. 2014;11:7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69.

    Article  CAS  PubMed  Google Scholar 

  21. Marchetti A, Martella C, Felicioni L, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005;23:857–65.

    Article  CAS  PubMed  Google Scholar 

  22. Roh MH. Triage of cytologic direct smears for ancillary studies: a case-based illustration and review. Arch Pathol Lab Med. 2013;137:1185–90.

    Article  PubMed  Google Scholar 

  23. Betz BL, Roh MH, Weigelin HC, et al. The application of molecular diagnostic studies interrogating EGFR and KRAS mutations to stained cytologic smears of lung carcinoma. Am J Clin Pathol. 2011;136:564–71.

    Article  CAS  PubMed  Google Scholar 

  24. Allegrini S, Antona J, Mezzapelle R, et al. Epidermal growth factor receptor gene analysis with a highly sensitive molecular assay in routine cytologic specimens of lung adenocarcinoma. Am J Clin Pathol. 2012;138(3):377–81.

    Article  CAS  PubMed  Google Scholar 

  25. da Cunha Santos G, Saieg MA. Preanalytic parameters in epidermal growth factor receptor mutation testing for non-small cell lung carcinoma: a review of cytologic series. Cancer Cytopathol. 2015;123:633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abedi-Ardekani B, Vielh P. Is liquid-based cytology the magic bullet for performing molecular techniques? Acta Cytol. 2014;58:574–81.

    Article  CAS  PubMed  Google Scholar 

  27. Kawahara A, Azuma K, Sumi A, et al. Identification of non-small-cell lung cancer with activating EGFR mutations in malignant effusion and cerebrospinal fluid: rapid and sensitive detection of exon 19 deletion E746-A750 and exon 21 L858R mutation by immunocytochemistry. Lung Cancer. 2011;74:35–40.

    Article  PubMed  Google Scholar 

  28. Pirker R, Herth FJ, Kerr KM, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010;5:1706–13.

    Article  PubMed  Google Scholar 

  29. Haung L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015;5:390–401.

    Article  Google Scholar 

  30. Sacher AG, Oxnard GR. Personalizing therapy for acquired resistance to EGFR kinase inhibitors in advanced NSCLC. AJHO. 2016;12:5–8.

    Google Scholar 

  31. Aviel-Ronen S, Blackhall FH, Shepherd SA, et al. K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer. 2006;8:30–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lozano MD, Zulueta JJ, Echeveste JI, et al. Assessment of epidermal growth factor receptor and K-ras mutation status in cytological stained smears of non-small cell lung cancer patients: correlation with clinical outcomes. Oncologist. 2011;16:877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aisner DL, Sams SB. The role of cytology specimens in molecular testing of solid tumors: techniques, limitations, and opportunities. Diagn Cytopathol. 2012;40:511–24.

    Article  PubMed  Google Scholar 

  34. Thunnissen E, Kerr KM, Herth FJ, et al. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer. 2012;76:1–18.

    Article  PubMed  Google Scholar 

  35. van Eijk R, Licht J, Schrumpf M, et al. Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One. 2011;6:e17791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horiike A, Kimura H, Nishio K, et al. Detection of epidermal growth factor receptor mutation in transbronchial needle aspirates of non-small cell lung cancer. Chest. 2007;131:1628–34.

    Article  CAS  PubMed  Google Scholar 

  37. Lozano MD, Labiano T, Echeveste J, et al. Assessment of EGFR and KRAS mutation status from FNAs and core-needle biopsies of non-small cell lung cancer. Cancer Cytopathol. 2015;123:230.

    Article  CAS  PubMed  Google Scholar 

  38. Fassina A, Gazziero A, Zardo D, et al. Detection of EGFR and KRAS mutations on trans-thoracic needle aspiration of lung nodules by high resolution melting analysis. J Clin Pathol. 2009;62:1096–102.

    Article  CAS  PubMed  Google Scholar 

  39. Moreira AL, Hasanovic A. Molecular characterization by immunocytochemistry of lung adenocarcinoma on cytology specimens. Acta Cytol. 2012;56:603–10.

    Article  CAS  PubMed  Google Scholar 

  40. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018;20(2):129–59.

    Article  CAS  PubMed  Google Scholar 

  41. Savic S, Bubendorf L. Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med. 2016;140(12):1323–30. https://doi.org/10.5858/arpa.2016-0202-RA.

    Article  PubMed  Google Scholar 

  42. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    Article  CAS  PubMed  Google Scholar 

  43. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  44. Rossi A. Alectinib for ALK-positive non-small-cell lung cancer. Expert Rev Clin Pharmacol. 2016;9:1005–13.

    Article  CAS  PubMed  Google Scholar 

  45. National Cancer Institute. FDA approval for crizotinib. https://www.cancer.gov/cancertopics/druginfo/fda-crizotinib. Accessed June 18 2014.

  46. Abbott Laboratories. Vysis ALK break apart FISH probe kit [package insert]. Abbott Park: Abbott Laboratories; 2011.

    Google Scholar 

  47. Bubendorf L, Savic S, Ruiz C. Molecular techniques. In: Bibbo M, Wibur D, editors. Comprehensive cytopathology. 4th ed. London: Elsevier Saunders; 2015. p. 912–25.

    Google Scholar 

  48. Betz BL, Dixon CA, Weigelin HC, et al. The use of stained cytologic direct smears for ALK gene rearrangement analysis of lung adenocarcinoma. Cancer Cytopathol. 2013;121:489–99.

    Article  CAS  PubMed  Google Scholar 

  49. Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203.

    Article  CAS  PubMed  Google Scholar 

  50. Bergethon K, Shaw AT, Ou SH, et al. ROS1rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee JS, Hirsh V, Park K, et al. Vandetanib versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol. 2012;30:1114–21.

    Article  CAS  PubMed  Google Scholar 

  53. Gelsomino F, Facchinetti F, Haspinger ER, et al. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol. 2014;89:284–99.

    Article  CAS  PubMed  Google Scholar 

  54. Cappuzzo F, Janne PA, Skokan M, et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol. 2009;20:298–304.

    Article  CAS  PubMed  Google Scholar 

  55. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Malami SA. Fine-needle aspiration cytology is an alternative source of high quality archival samples in biobanking. ISRN Pathol. 2011;2011:129785.

    Article  Google Scholar 

  57. Ellison G, Donald E, McWalter G, et al. A comparison of ARMS and DNA sequencing for mutation analysis in clinical biopsy samples. J Exp Clin Cancer Res. 2010;29:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aisner DL, Deshpande C, Baloch Z, et al. Evaluation of EGFR mutation status in cytology specimens: an institutional experience. Diagn Cytopathol. 2013;41:316–23.

    Article  CAS  PubMed  Google Scholar 

  59. Wang S, Yu B, Ng CC, et al. The suitability of small biopsy and cytology specimens for EGFR and other mutation testing in non-small cell lung cancer. Transl Lung Cancer Res. 2015;4:119–25.

    PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Zhang J, Gao G, et al. EML4-ALK fusion detected by RT-PCR confers similar response to crizotinib as detected by FISH in patients with advanced NSCLC. J Thorac Oncol. 2015;10:1546–52.

    Article  CAS  PubMed  Google Scholar 

  61. Demidova I, Barinov A, Savelov N, et al. Immunohistochemistry, fluorescence in situ hybridization, and reverse transcription-polymerase chain reaction for the detection of anaplastic lymphoma kinase gene rearrangements in patients with non-small cell lung cancer: potential advantages and methodologic pitfalls. Arch Pathol Lab Med. 2014;138:794–802.

    Article  CAS  PubMed  Google Scholar 

  62. Oktay MH, Adler E, Hakima L, et al. The application of molecular diagnostics to stained cytology smears. J Mol Diagn. 2016;18:407–15.

    Article  CAS  PubMed  Google Scholar 

  63. Dama E, Tillhon M, Bertallot G, et al. Sensitive and affordable diagnostic assay for the quantitative detection of anaplastic lymphoma kinase (ALK) alterations in patients with non-small cell lung cancer. Oncotarget. 2016;7:37160–76.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Di Lorito A, Schmitt FC. (Cyto)pathology and sequencing: next (or last) generation? Diagn Cytopathol. 2012;40:459–61.

    Article  PubMed  Google Scholar 

  65. Kanagal-Shamanna R, Portier BP, Singh RR, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27:314–27.

    Article  CAS  PubMed  Google Scholar 

  66. Malapelle U, Mayo-de-Las Casas C, Molina-Vila M, et al. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol. 2017;125(8):615–26. https://doi.org/10.1002/cncy.21868.

    Article  PubMed  CAS  Google Scholar 

  67. Krøigård AB, Thomassen M, Lænkholm A-V, Kruse TA, Larsen MJ. Evaluation of nine somatic variant callers for detection of somatic mutations in exome and targeted deep sequencing data. PLoS One. 2016;11(3):e0151664. https://doi.org/10.1371/journal.pone.0151664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Velizheva NP, Rechsteiner MP, Wong CE, et al. Cytology smears as excellent starting material for next-generation sequencing-based molecular testing of patients with adenocarcinoma of the lung. Cancer Cytopathol. 2016;125(1):30–40. https://doi.org/10.1002/cncy.21771.

    Article  PubMed  CAS  Google Scholar 

  69. Buttitta F, Felicioni L, Del Grammastro M, et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res. 2013;19:691–8.

    Article  CAS  PubMed  Google Scholar 

  70. Qiu T, Guo H, Zhao H, et al. Next-generation sequencing for molecular diagnosis of lung adenocarcinoma specimens obtained by fine needle aspiration cytology. Sci Rep. 2015;5:11317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abel HJ, Al-Kateb H, Cottrell CE, et al. Detection of gene rearrangements in targeted clinical next-generation sequencing. J Mol Diagn. 2014;16:405–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra54.

    Article  CAS  Google Scholar 

  73. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ilie M, Hofman V, Dietel M, Soria JC, Hofman P. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch. 2016;468:511–25.

    Article  CAS  PubMed  Google Scholar 

  75. Bubendorf L, Lantuejoul S, de Langen AJ, et al. Nonsmall cell lung carcinoma: diagnostic difficulties in small biopsies and cytological specimens. Eur Respir Rev. 2017;26:170007.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Lorito, A., Stieber, D., Schmitt, F.C. (2018). Molecular Cytology Applications on the Lung. In: Schmitt, F. (eds) Molecular Applications in Cytology. Springer, Cham. https://doi.org/10.1007/978-3-319-74942-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74942-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74940-2

  • Online ISBN: 978-3-319-74942-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics