Protozoan Parasite Auxotrophies and Metabolic Dependencies

Chapter
Part of the Experientia Supplementum book series (EXS, volume 109)

Abstract

Diseases caused by protozoan parasites have a major impact on world health. These early branching eukaryotes cause significant morbidity and mortality in humans and livestock. During evolution, protozoan parasites have evolved toward complex life cycles in multiple host organisms with different nutritional resources. The conservation of functional metabolic pathways required for these successive environments is therefore a prerequisite for parasitic lifestyle. Nevertheless, parasitism drives genome evolution toward gene loss and metabolic dependencies (including strict auxotrophy), especially for obligatory intracellular parasites. In this chapter, we will compare and contrast how protozoan parasites have perfected this metabolic adaptation by focusing on specific auxotrophic pathways and scavenging strategies used by clinically relevant apicomplexan and trypanosomatid parasites to access host’s nutritional resources. We will further see how these metabolic dependencies have in turn been exploited for therapeutic purposes against these human pathogens.

Keywords

Auxotrophy Purines Polyamines Vitamins Folates NAD+ Heme 

Notes

Funding Statement

This work was supported by the IRD (Institut de Recherche pour le Développement) institutional funding. E.G. is a recipient of the FRM (Fondation pour la Recherche Médicale) postdoctoral fellowship (ARF2015093409).

References

  1. Aurrecoechea C, Barreto A, Basenko EY et al (2017) EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res 45:D581–D591CrossRefPubMedGoogle Scholar
  2. Baker N, de Koning HP, Mäser P, Horn D (2013) Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 29:110–118CrossRefPubMedGoogle Scholar
  3. Balcazar DE, Vanrell MC, Romano PS et al (2017) The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists. PLoS Negl Trop Dis 11:e0005513–e0005522CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berg M, Van der Veken P, Goeminne A et al (2010) Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 17:2456–2481CrossRefPubMedGoogle Scholar
  5. Berriman M, Ghedin E, Hertz-Fowler C et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422CrossRefPubMedGoogle Scholar
  6. Birkholtz L-M, Wrenger C, Joubert F et al (2004) Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions. Biochem J 377:439–448CrossRefPubMedPubMedCentralGoogle Scholar
  7. Birkholtz L-M, Williams M, Niemand J et al (2011) Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities. Biochem J 438:229–244CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boitz JM, Ullman B (2013) Adenine and adenosine salvage in Leishmania donovani. Mol Biochem Parasitol 190:51–55CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boitz JM, Ullman B, Jardim A, Carter NS (2012) Purine salvage in Leishmania: complex or simple by design? Trends Parasitol:1–8Google Scholar
  10. Boitz JM, Gilroy CA, Olenyik TD et al (2017) Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect Immun 85:e00554–16CrossRefPubMedGoogle Scholar
  11. Campos-Salinas J, Cabello-Donayre M, García-Hernández R et al (2011) A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol Microbiol 79:1430–1444CrossRefPubMedGoogle Scholar
  12. Carter NS, Ben Mamoun C, Liu W et al (2000a) Isolation and functional characterization of the PfNT1 nucleoside transporter gene from Plasmodium falciparum. J Biol Chem 275:10683–10691CrossRefPubMedGoogle Scholar
  13. Carter NS, Drew ME, Sanchez M et al (2000b) Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem 275:20935–20941CrossRefPubMedGoogle Scholar
  14. Carter NS, Yates PA, Gessford SK et al (2010) Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol 78:92–107PubMedPubMedCentralGoogle Scholar
  15. Cassera MB, Zhang Y, Hazleton KZ, Schramm VL (2011) Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem 11:2103–2115CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chang CS, Chang KP (1985) Heme requirement and acquisition by extracellular and intracellular stages of Leishmania mexicana amazonensis. Mol Biochem Parasitol 16:267–276CrossRefPubMedGoogle Scholar
  17. Contreras LE, Neme R, Ramírez MH (2015) Identification and functional evaluation of Leishmania braziliensis nicotinamide mononucleotide adenylyltransferase. Protein Expr Purif 115:26–33CrossRefPubMedGoogle Scholar
  18. Cook T, Roos D, Morada M et al (2007) Divergent polyamine metabolism in the Apicomplexa. Microbiology 153:1123–1130CrossRefPubMedGoogle Scholar
  19. D’Souza G, Kost C (2016) Experimental evolution of metabolic dependency in bacteria. PLoS Genet 12:e1006364CrossRefPubMedPubMedCentralGoogle Scholar
  20. D’Souza G, Waschina S, Pande S et al (2014) Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68:2559–2570CrossRefPubMedGoogle Scholar
  21. de Koning HP, Bridges DJ, Burchmore RJS (2005) Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 29:987–1020CrossRefPubMedGoogle Scholar
  22. DeBarry JD, Kissinger JC (2011) Jumbled genomes: missing apicomplexan synteny. Mol Biol Evol 28:2855–2871CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dewar S, Sienkiewicz N, Ong HB et al (2016) The role of folate transport in antifolate drug action in Trypanosoma brucei. J Biol Chem 291:24768–24778CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dostert C, Pétrilli V, Van Bruggen R et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677CrossRefPubMedPubMedCentralGoogle Scholar
  25. El-Sayed NMA, Myler PJ, Bartholomeu DC et al (2005a) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415CrossRefPubMedGoogle Scholar
  26. El-Sayed NMA, Myler PJ, Blandin G et al (2005b) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409CrossRefPubMedGoogle Scholar
  27. Ensminger AW, Yassin Y, Miron A, Isberg RR (2012) Experimental evolution of Legionella pneumophila in mouse macrophages leads to strains with altered determinants of environmental survival. PLoS Pathog 8:e1002731–12CrossRefGoogle Scholar
  28. Fairlamb AH, Henderson GB, Bacchi CJ, Cerami A (1987) In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 24:185–191CrossRefPubMedGoogle Scholar
  29. Fairlamb AH, Gow NAR, Matthews KR, Waters AP (2016) Drug resistance in eukaryotic microorganisms. Nat Microbiol 1:16092CrossRefPubMedPubMedCentralGoogle Scholar
  30. Foth BJ, Ralph SA, Tonkin CJ et al (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708CrossRefPubMedGoogle Scholar
  31. Gazanion E, Garcia D, Silvestre R et al (2011) The Leishmania nicotinamidase is essential for NAD(+) production and parasite proliferation. Mol Microbiol 82:21–38CrossRefPubMedGoogle Scholar
  32. Gazanion E, Seblova V, Votýpka J et al (2012) Leishmania infantum nicotinamidase is required for late-stage development in its natural sand fly vector, Phlebotomus perniciosus. Int J Parasitol 42:323–327CrossRefPubMedGoogle Scholar
  33. Gero AM, O’Sullivan WJ (1990) Purines and pyrimidines in malarial parasites. Blood Cells 16:467–484. discussion 485–98PubMedGoogle Scholar
  34. Goldman-Pinkovich A, Balno C, Strasser R et al (2016) An arginine deprivation response pathway is induced in Leishmania during macrophage invasion. PLoS Pathog 12:e1005494–18CrossRefGoogle Scholar
  35. Hart RJ, Ghaffar A, Abdalal S et al (2016) Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission. Biology Open 5:1022–1029CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hasne M-P, Ullman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280:15188–15194CrossRefPubMedGoogle Scholar
  37. Hasne M-P, Soysa R, Ullman B (2016) The Trypanosoma cruzi diamine transporter is essential for robust infection of mammalian cells. PLoS One 11:e0152715–17CrossRefGoogle Scholar
  38. Helliwell KE, Wheeler GL, Smith AG (2013) Widespread decay of vitamin-related pathways: coincidence or consequence? Trends Genet 29:469–478CrossRefPubMedGoogle Scholar
  39. Horáková E, Changmai P, Vancová M et al (2017) The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J Biol Chem 292:6998–7010CrossRefPubMedGoogle Scholar
  40. Huynh C, Yuan X, Miguel DC et al (2012) Heme Uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog 8:e1002795CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jackson AP, Otto TD, Aslett M et al (2016) Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol 26:161–172CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jagu E, Pomel S, Pethe S et al (2017) Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 139:982–1015CrossRefPubMedGoogle Scholar
  44. Janouskovec J, Keeling PJ (2016) Evolution: causality and the origin of parasitism. Curr Biol 26:R174–R177CrossRefPubMedGoogle Scholar
  45. Janouskovec J, Tikhonenkov DV, Burki F et al (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci 112:10200–10207CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ke H, Sigala PA, Miura K et al (2014) The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J Biol Chem 289:34827–34837CrossRefPubMedPubMedCentralGoogle Scholar
  47. Klein CC, Alves JMP, Serrano MG et al (2013) Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLoS One 8:e79786CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kooij TWA, Janse CJ, Waters AP (2006) Plasmodium post-genomics: better the bug you know? Nat Rev Microbiol 4:344–357CrossRefPubMedGoogle Scholar
  49. Kořený L, Lukes J, Oborník M (2010) Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int J Parasitol 40:149–156CrossRefPubMedGoogle Scholar
  50. Kořený L, Oborník M, Lukes J (2013) Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog 9:e1003088CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kouni el MH (2003) Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol Ther 99:283–309CrossRefGoogle Scholar
  52. Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248CrossRefPubMedGoogle Scholar
  53. Kronenberger T, Schettert I, Wrenger C (2013) Targeting the vitamin biosynthesis pathways for the treatment of malaria. Future Med Chem 5:769–779CrossRefPubMedGoogle Scholar
  54. Krug EC, Marr JJ, Berens RL (1989) Purine metabolism in Toxoplasma gondii. J Biol Chem 264:10601–10607PubMedGoogle Scholar
  55. Krugliak M, Zhang J, Ginsburg H (2002) Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol 119:249–256CrossRefPubMedGoogle Scholar
  56. Landfear SM, Ullman B, Carter NS, Sanchez MA (2004) Nucleoside and nucleobase transporters in parasitic protozoa. Eukaryotic Cell 3:245–254CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 365:749–763CrossRefPubMedPubMedCentralGoogle Scholar
  58. Macedo JP, Currier RB, Wirdnam C et al (2017) Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei. FASEB J 31(10):4649–4660. fj.201700311R–17CrossRefPubMedPubMedCentralGoogle Scholar
  59. Martin JL, Yates PA, Soysa R et al (2014) Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 10:e1003938CrossRefPubMedPubMedCentralGoogle Scholar
  60. Meireles P, Mendes AM, Aroeira RI et al (2017) Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci Rep 7:849–812CrossRefGoogle Scholar
  61. Mesquita I, Varela P, Belinha A et al (2016) Exploring NAD(+) metabolism in host-pathogen interactions. Cell Mol Life Sci 73:1225–1236CrossRefPubMedGoogle Scholar
  62. Michels PAM, Avilán L (2011) The NAD(+) metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD(+) salvage, offers prospects for development of anti-parasite chemotherapy. Mol Microbiol 82:4–8CrossRefPubMedGoogle Scholar
  63. Miller-Fleming L, Olín-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427:3389–3406CrossRefPubMedGoogle Scholar
  64. Mukkada AJ, Meade JC, Glaser TA, Bonventre PF (1985) Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 229:1099–1101CrossRefPubMedGoogle Scholar
  65. Müller IB, Hyde JE (2013) Folate metabolism in human malaria parasites—75 years on. Mol Biochem Parasitol 188:63–77CrossRefPubMedGoogle Scholar
  66. Müller S, Kappes B (2007) Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. Trends Parasitol 23:112–121CrossRefPubMedPubMedCentralGoogle Scholar
  67. Müller IB, Hyde JE, Wrenger C (2010) Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 26:35–43CrossRefPubMedGoogle Scholar
  68. Nagaraj VA, Sundaram B, Varadarajan NM et al (2013) Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog 9:e1003522–e1003513CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nare B, Hardy LW, Beverley SM (1997) The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J Biol Chem 272:13883–13891CrossRefPubMedGoogle Scholar
  70. Nussbaum K, Honek J, Cadmus CMCVC, Efferth T (2010) Trypanosomatid parasites causing neglected diseases. Curr Med Chem 17:1594–1617CrossRefPubMedGoogle Scholar
  71. Nzila A, Okombo J, Molloy AM (2014) Impact of folate supplementation on the efficacy of sulfadoxine/pyrimethamine in preventing malaria in pregnancy: the potential of 5-methyl-tetrahydrofolate. J Antimicrob Chemother 69:323–330CrossRefPubMedGoogle Scholar
  72. O’Hara JK, Kerwin LJ, Cobbold SA et al (2014) Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum. PLoS One 9:e94061CrossRefPubMedPubMedCentralGoogle Scholar
  73. Opperdoes FR, Butenko A, Flegontov P et al (2016) Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol 63:657–678CrossRefPubMedGoogle Scholar
  74. Ortiz D, Sanchez MA, Koch HP et al (2009) An acid-activated nucleobase transporter from Leishmania major. J Biol Chem 284:16164–16169CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ortiz D, Valdes R, Sanchez MA et al (2010) Purine restriction induces pronounced translational upregulation of the NT1 adenosine/pyrimidine nucleoside transporter in Leishmania major. Mol Microbiol 78:108–118PubMedPubMedCentralGoogle Scholar
  76. Ouellette M, Drummelsmith J, El-Fadili A et al (2002) Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int J Parasitol 32:385–398CrossRefPubMedGoogle Scholar
  77. Peacock CS, Seeger K, Harris D et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rajendran E, Hapuarachchi SV, Miller CM et al (2017) Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites. Nat Commun 8:1–13CrossRefGoogle Scholar
  79. Roberts S, Ullman B (2017) Parasite polyamines as pharmaceutical targets. Curr Pharm Des 23:1–17CrossRefGoogle Scholar
  80. Salcedo-Sora JE, Ward SA (2013) The folate metabolic network of falciparum malaria. Mol Biochem Parasitol 188:51–62CrossRefPubMedGoogle Scholar
  81. Salcedo-Sora JE, Ochong E, Beveridge S et al (2011) The molecular basis of folate salvage in Plasmodium falciparum: characterization of two folate transporters. J Biol Chem 286:44659–44668CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sánchez-Lancheros DM, Ospina-Giraldo LF, Ramírez-Hernández MH et al (2016) Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): a cytosol protein target for serine kinases. Mem Inst Oswaldo Cruz 111:670–675CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shameer S, Logan-Klumpler FJ, Vinson F et al (2015) TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Res 43:D637–D644CrossRefPubMedGoogle Scholar
  84. Shanmugasundram A, Gonzalez-Galarza FF, Wastling JM et al (2013) Library of apicomplexan metabolic pathways: a manually curated database for metabolic pathways of apicomplexan parasites. Nucleic Acids Res 41:D706–D713CrossRefPubMedGoogle Scholar
  85. Sigala PA, Goldberg DE (2014) The peculiarities and paradoxes of Plasmodium heme metabolism. Annu Rev Microbiol 68:259–278CrossRefPubMedGoogle Scholar
  86. Sigala PA, Crowley JR, Henderson JP, Goldberg DE (2015) Deconvoluting heme biosynthesis to target blood-stage malaria parasites. eLife 4:50CrossRefGoogle Scholar
  87. Tjhin ET, Spry C, Sewell AL et al (2017) Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. bioRxiv:137182Google Scholar
  88. Toh SQ, Glanfield A, Gobert GN, Jones MK (2010) Heme and blood-feeding parasites: friends or foes? Parasit Vectors 3:108CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vasudevan G, Carter NS, Drew ME et al (1998) Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc Natl Acad Sci 95:9873–9878CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vickers TJ, Beverley SM (2011) Folate metabolic pathways in Leishmania. Essays Biochem 51:63–80CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wainwright M, Maisch T, Nonell S et al (2017) Photoantimicrobials-are we afraid of the light? Lancet Infect Dis 17:e49–e55CrossRefPubMedGoogle Scholar
  92. Waller RF, Keeling PJ, Donald RGK et al (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci 95:12352–12357CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wilson RJ, Denny PW, Preiser PR et al (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172CrossRefPubMedGoogle Scholar
  94. Woo YH, Ansari H, Otto TD et al (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 4:441CrossRefGoogle Scholar
  95. World Malaria Report 2016: Summary. World Health Organization, Geneva; 2017 (WHO/HTM/GMP/2017.4). Licence: CC BY-NC-SA 3.0 IGO.Google Scholar
  96. Zhang C-J, Chia WN, Loh CCY et al (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:1–11Google Scholar
  97. Zuegge J, Ralph S, Schmuker M et al (2001) Deciphering apicoplast targeting signals – feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280:19–26CrossRefPubMedGoogle Scholar
  98. Zwerschke D, Karrie S, Jahn D, Jahn M (2014) Leishmania major possesses a unique HemG-type protoporphyrinogen IX oxidase. Biosci Rep 34:391–400CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIVEGEC, IRD, CNRS, University of MontpellierMontpellierFrance

Personalised recommendations