Skip to main content

Cellular Metabolism at a Glance

  • Chapter
  • First Online:
Metabolic Interaction in Infection

Part of the book series: Experientia Supplementum ((EXS,volume 109))

  • 1518 Accesses

Abstract

Metabolism is highly coordinated component of the cellular activity that involves sequential chemical transformations, within a so-called metabolic network. Through these coordinated actions, living organisms acquire energy and biosynthetic precursors to maintain cellular homeostasis and function. Metabolism relies on the breaking down of macromolecules to produce energy [catabolism] and/or intermediary metabolites that are then used to construct essential building blocks for macromolecule production [anabolism]. Overall, these metabolic processes are controlled by cellular energy status: when the energy released from catabolic processes exceeds the cellular demands the storage of metabolites in the form of lipids and glycogen takes place. These phenomena have been vastly associated with the genesis of metabolic disorders, such as obesity. In recent years, we have assisted to a rediscovery of metabolism through the identification of metabolic intermediaries that act as key players on differentiation, proliferation, and function of immune cells. This recent acknowledgement of the impact of metabolism in the overall immune response originated the ground-breaking field of immunometabolism. Here, we will provide a holistic view of metabolism highlighting the biochemical principles underlying its regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:475–478

    Article  CAS  PubMed  Google Scholar 

  • Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananieva E (2015) Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 6:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Arts RJW, Novakovic B, ter Horst R, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F, Silvestre R, Cheng SC, Wang SY et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Averous J, Lambert-Langlais S, Mesclon F, Carraro V, Parry L, Jousse C, Bruhat A, Maurin A-C, Pierre P, Proud CG et al (2016) GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci Rep 6:27698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban RS (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258:377–389

    Article  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002a) The glycolytic pathway is tightly controlled. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry. W.H. Freeman, New York

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002b) Glycolysis is an energy-conversion pathway in many organisms. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry. W.H. Freeman, New York. section 16.1

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002c) The metabolism of glucose-6-phosphate by the pentose phosphate pathway is coordinated with glycolysis. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry. W.H. Freeman, New York

    Google Scholar 

  • Bonkovsky HL, Guo JT, Hou W, Li T, Narang T, Thapar M (2013) Porphyrin and heme metabolism and the porphyrias. Compr Physiol 3:365–401

    PubMed  Google Scholar 

  • Boulton RB (1996) Yeast and biochemistry of ethanol fermentation. In: Boulton RB, Singleton VL, Bisson LF, Kunkee RE (eds) Principles and practices of winemaking. Springer, Boston, MA, pp 102–192

    Chapter  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  CAS  PubMed  Google Scholar 

  • Buchakjian MR, Kornbluth S (2010) The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol 11:715–727

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JHA, Rao NA, Aghajanirefah A et al (2014) mTOR- and HIF-1-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684

    Article  PubMed  PubMed Central  Google Scholar 

  • Citric THE, Cycle A (2010) The citric acid cycle. In: Eastmond, PJ Graham (eds) pp 601–630

    Google Scholar 

  • Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Déry MAC, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540

    Article  PubMed  Google Scholar 

  • Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grohmann U, Bronte V (2010) Control of immune response by amino acid metabolism. Immunol Rev 236:243–264

    Article  CAS  PubMed  Google Scholar 

  • Hansford R (2002) Oxidative phosphorylation. Encycl Life Sci:1–8

    Google Scholar 

  • Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Houten SM, Wanders RJA (2010) A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherted Metab Dis 33:469–477

    Article  CAS  Google Scholar 

  • Israelsen WJ, Vander Heiden MG (2015) Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol 43:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang B (2017) Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 4:25–27

    Article  CAS  Google Scholar 

  • Jones W, Bianchi K (2015) Aerobic glycolysis: beyond proliferation. Front Immunol 6:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Knobloch M, Pilz GA, Ghesquière B, Kovacs WJ, Wegleiter T, Moore DL, Hruzova M, Zamboni N, Carmeliet P, Jessberger S (2017) A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20:2144–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg H (2000) Krebs and his trinity of cycles. Nat Rev Mol Cell Biol 1:225–228

    Article  CAS  PubMed  Google Scholar 

  • Lane AN, Fan TWM (2015) Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43:2466–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Ellis JM, Wolfgang MJ (2015) Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep 10:266–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  • Mesquita I, Varela P, Belinha A, Gaifem J, Laforge M, Vergnes B, Estaquier J, Silvestre R (2016) Exploring NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci 73:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath S, Villadsen J (2015) Oxidative phosphorylation revisited. Biotechnol Bioeng 112:429–437

    Article  CAS  PubMed  Google Scholar 

  • O’Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366:135–151

    Article  PubMed  Google Scholar 

  • O’Neill LAJ, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim Biophys Acta – Bioenerg 1553:188–211

    Article  CAS  Google Scholar 

  • Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298:E141–E145

    Article  CAS  PubMed  Google Scholar 

  • Wolfson RL, Sabatini DM (2017) The Dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab 26:301–309

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Lu Z (2013) Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett 339:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao CH, Fowle-Grider R, Mahieu NG, Liu GY, Chen YJ, Wang R, Singh M, Potter GS, Gross RW, Schaefer J et al (2016) Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem Biol 23:483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mesquita, I., Rodrigues, F. (2018). Cellular Metabolism at a Glance. In: Silvestre, R., Torrado, E. (eds) Metabolic Interaction in Infection. Experientia Supplementum, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-74932-7_1

Download citation

Publish with us

Policies and ethics