Skip to main content

An Introduction to Singular SPDEs

  • Conference paper
  • First Online:
Book cover Stochastic Partial Differential Equations and Related Fields (SPDERF 2016)

Abstract

We review recent results on the analysis of singular stochastic partial differential equations in the language of paracontrolled distributions.

Financial support by the DFG via CRC 1060 (MG) and Research Unit FOR 2402 (NP) and is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Possibly T is quite small because when setting up the Picard iteration we pick up a superlinear estimate so at this point we cannot exclude the possibility that the solution blows up in finite time. To prove existence for all times we have to make use of the sign of the nonlinearity \(-\varphi ^3\) in (4), see [35].

  2. 2.

    This is not exactly true, we also need some time regularity of f but for simplicity we omit this in the discussion.

  3. 3.

    We pick up a quadratic estimate from the paralinearisation result (6) because it is based on a second order Taylor expansion, and therefore we cannot exclude that the solutions blows up in finite time. But given an a priori bound on the \(L^\infty \) norm of u one can show that \((u,v^\sharp )\) stays bounded in \(C_T\mathscr {C}^{1-} \times C_T \mathscr {C}^{2-}\), see [21], and such an a priori bound can for certain nonlinearities G be derived from the maximum principle, see [12].

  4. 4.

    Strictly speaking it is not possible to invert the Laplace operator and we have to shift it and consider \((1 - \varDelta )^{- 1}\) instead, but for simplicity we ignore this here.

  5. 5.

    Besov spaces on \(\mathbb {R}\) are defined exactly in the same way as on \(\mathbb {T}\) and they have essentially the same properties.

References

  1. Allez, R., Chouk, K.: The Continuous Anderson Hamiltonian in Dimension Two (2015). arXiv:1511.02718

  2. Albeverio, S., Röckner, M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Related Fields 89(3), 347–386 (1991)

    Article  MathSciNet  Google Scholar 

  3. Bailleul, I., Bernicot, F.: Heat semigroup and singular PDEs. J. Funct. Anal. 270(9), 3344–3452 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bailleul, I., Bernicot, F.: Higher Order Paracontrolled Calculus (2016). arXiv:1609.06966

  5. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Google Scholar 

  6. Bailleul, I., Debussche, A., Hofmanova, M.: Quasilinear Generalized Parabolic Anderson Model (2016). arXiv:1610.06726

  7. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales scientifiques de l’École Normale supérieure 14, 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  8. Brunded, Y.: Algebraic Renormalisation of Regularity Structures (2016). arXiv:1610.08468

  9. Catellier, R., Chouk, K.: Paracontrolled Distributions and the 3-dimensional Stochastic Quantization Equation (2013). arXiv:1310.6869

  10. Cannizzaro, G., Chouk, K.: Multidimensional SDEs with Singular Drift and Universal Construction of the Polymer Measure with White Noise Potential (2015). arXiv:1501.04751

  11. Chouk, K., Friz, P.K.: Support Theorem for a Singular Semilinear Stochastic Partial Differential Equation (2014). arXiv:1409.4250

  12. Cannizzaro, G., Friz, P.K,, Gassiat, P.: Malliavin calculus for regularity structures: the case of gPAM. J. Funct. Anal. 272(1), 363–419 (2017)

    Google Scholar 

  13. Chouk, K., Gairing, J., Perkowski, N.: An Invariance Principle for the Two-dimensional Parabolic Anderson Model with Small Potential (2016). arXiv:1609.02471

  14. Chandra, A., Hairer, M.: An Analytic BPHZ Theorem for Regularity Structures (2016). arXiv:1612.08138

  15. Delarue, F., Diel, R.: Rough paths and 1d SDE with a time dependent distributional drift: application to polymers. Probab. Theory Related Fields 165(1–2), 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  16. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    Article  MathSciNet  Google Scholar 

  17. Furlan, M., Gubinelli, M.: Paracontrolled Quasilinear SPDEs (2016). arXiv:1610.07886

  18. Friz, P.K., Hairer, M.: A Course on Rough Paths: with an Introduction to Regularity Structures. Springer, Berlin (2014)

    Google Scholar 

  19. Funaki, T., Hoshino, M.: A coupled KPZ equation, its two types of approximations and existence of global solutions. J. Funct. Anal. 273(3), 1165–1204 (2017)

    Article  MathSciNet  Google Scholar 

  20. Fukushima, M., Nakao, S.: On spectra of the Schrödinger operator with a white Gaussian noise potential. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 37(3), 267–274 (1977)

    Article  Google Scholar 

  21. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled Distributions and Singular PDEs. Forum of Mathematics. Pi, 3:e6, 75 (2015)

    Google Scholar 

  22. Gubinelli, M., Perkowski, N.: Lectures on singular stochastic PDEs. Ensaios Matemáticos [Mathematical Surveys], vol. 29. Sociedade Brasileira de Matemática, Rio de Janeiro (2015)

    Google Scholar 

  23. Gubinelli, M., Perkowski, N.: The Hairer-Quastel universality result at stationarity. In: Stochastic Analysis on Large Scale Interacting Systems, RIMS Kôkyûroku Bessatsu, B59, pp. 101–115. Research Institute for Mathematical Sciences (RIMS), Kyoto (2016)

    Google Scholar 

  24. Gubinelli, M., Perkowski, N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)

    Article  MathSciNet  Google Scholar 

  25. Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004)

    Article  MathSciNet  Google Scholar 

  26. Hairer, M.: Rough stochastic PDEs. Commun. Pure Appl. Math. 64(11), 1547–1585 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  28. Hairer, M., Quastel, J.: A Class of Growth Models Rescaling to KPZ (2015). arXiv:1512.07845

  29. Kupiainen, A.: Renormalization group and stochastic PDEs. Annales Henri Poincar. A J. Theor. Math. Phys. 17(3), 497–535 (2016)

    Article  MathSciNet  Google Scholar 

  30. Lyons, T.J., Caruana, M.J., Lvy, T.: Differential Equations Driven by Rough Paths: Ecole d’Et de Probabilits de Saint-Flour XXXIV-2004, 1 edn. Springer, Berlin (2007)

    Google Scholar 

  31. Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford University Press, Oxford (2002)

    Google Scholar 

  32. Lyons, T.: Differential equations driven by rough signals, pp. 215–310. Revista Matemtica, Iberoamericana (1998)

    MATH  Google Scholar 

  33. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. In: Rendiconti del Circolo Matematico di Palermo. Serie II, pp. 1–20 (1981)

    Google Scholar 

  34. Mourrat, J.-C., Weber, H.: Global Well-posedness of the Dynamic \(\phi ^4_3\) Model on the Torus (2016). arXiv:1601.01234

  35. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45(4), 2398–2476 (2017)

    Article  MathSciNet  Google Scholar 

  36. Mourrat, J.-C., Weber, H., Xu, W.: Construction of \(\phi ^4_3\) Diagrams for Pedestrians (2016). arXiv:1610.08897

  37. Otto, F., Weber, H.: Quasilinear SPDEs via Rough Paths (2016). arXiv:1605.09744

  38. Prömel, D.J., Trabs, M.: Rough differential equations driven by signals in Besov spaces. J. Differ. Equ. 260(6), 5202–5249 (2016)

    Google Scholar 

  39. Röckner, M., Zhu, R., Zhu, X.: Restricted Markov uniqueness for the stochastic quantization of \(P(\Phi )_2\) and its applications. J. Funct. Anal. 272(10), 4263–4303 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zhu, R., Zhu, X.: Approximating Three-dimensional Navier–Stokes Equations Driven by Space-time White Noise (2014). arXiv:1409.4864

  41. Zhu, R., Zhu, X.: A Wong-Zakai Theorem for \(\phi ^4_3\) Model (2015). arXiv:1504.04143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Gubinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gubinelli, M., Perkowski, N. (2018). An Introduction to Singular SPDEs. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_4

Download citation

Publish with us

Policies and ethics