Skip to main content

Probabilistic Approach to the Stochastic Burgers Equation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 229))

Abstract

We review the formulation of the stochastic Burgers equation as a martingale problem. One way of understanding the difficulty in making sense of the equation is to note that it is a stochastic PDE with distributional drift, so we first review how to construct finite-dimensional diffusions with distributional drift. We then present the uniqueness result for the stationary martingale problem of (M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique. 2015, [18]), but we mainly emphasize the heuristic derivation and also we include a (very simple) extension of (M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique. 2015, [18]) to a non-stationary regime.

Financial support by the DFG via CRC 1060 (MG) and Research Unit FOR 2402 (NP) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The paper [16] is the revised and published version of [15].

References

  1. Assing, S.: A pregenerator for burgers equation forced by conservative noise. Commun. Math. Phys. 225(3), 611–632 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bertini, L., Giacomin, G.: Stochastic burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker-Planck-Kolmogorov Equations. American Mathematical Society, USA (2015)

    Google Scholar 

  4. Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. arXiv:1501.04751 (2015)

  5. Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of ODEs. Stoch. Process. Appl. 126(8), 2323–2366 (2016)

    Article  MathSciNet  Google Scholar 

  6. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces. Cambridge University Press, UK (2002)

    Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, UK (2014)

    Google Scholar 

  8. Delarue, F., Diel, R.: Rough paths and 1d SDE with a time dependent distributional drift: application to polymers. Probab. Theory Relat. Fields 165(1), 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  9. Diehl, J., Gubinelli, M., Perkowski, N.: The Kardar-Parisi-Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions. Comm. Math. Phys. 354(2), 549–589 (2017)

    Google Scholar 

  10. Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models: Ecole d’été de Probabilités de Saint-Flour XL-2010. Springer Science and Business Media, Berlin (2011)

    Book  Google Scholar 

  11. Flandoli, F., Russo, F., Wolf, J.: Some SDEs with distributional drift. Part I: General calculus. Osaka J. Math. 40(2), 493–542 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Flandoli, F., Russo, F., Wolf, J.: Some SDEs with distributional drift. Part II: Lyons- Zheng structure, Itô’s formula and semimartingale characterization. Random Oper. Stoch. Equ. 12(2), 145–184 (2004)

    Article  Google Scholar 

  13. Flandoli, F., Issoglio, E., Russo, F.: Multidimensional stochastic differential equations with distributional drift. Trans. Am. Math. Soc. 369, 1665–1688 (2017)

    Article  MathSciNet  Google Scholar 

  14. Funaki, T., Quastel, J.: KPZ equation, its renormalization and invariant measures. Stoch. Partial Differ. Equ. Anal. Comput. 3(2), 159–220 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Gonçalves, P., Jara, M.: Universality of KPZ Equation. arXiv:1003.4478 (2010)

  16. Gonçalves, P., Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gonçalves, P., Jara, M., Sethuraman, S.: A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43(1), 286–338 (2015)

    Article  MathSciNet  Google Scholar 

  18. Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique. J. Amer. Math. Soc. 31(2), 427–471 (2018)

    Google Scholar 

  19. Gubinelli, M., Jara, M.: Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ. Anal. Comput. 1(2), 325–350 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3(6), 1–75 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Hairer, M.: Rough stochastic PDEs. Commun. Pure Appl. Math. 64(11), 1547–1585 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  23. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  24. Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, UK (1997)

    Book  Google Scholar 

  25. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer Science and Business Media, Berlin (2013)

    MATH  Google Scholar 

  26. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes: Time Symmetry and Martingale Approximation. Springer, Berlin (2012)

    Book  Google Scholar 

  27. Krylov, N.V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat Fields 131(2), 154–196 (2005)

    Article  MathSciNet  Google Scholar 

  28. Kupiainen, Antti: Renormalization group and stochastic PDEs. Ann. Henri Poincaré 17(3), 497–535 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mathieu, P.: Zero white noise limit through Dirichlet forms, with application to diffusions in a random medium. Probab. Theory Relat Fields 99(4), 549–580 (1994)

    Article  MathSciNet  Google Scholar 

  30. Mathieu, P.: Spectra, exit times and long time asymptotics in the zero-white-noise limit. Stochastics 55(1–2), 1–20 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  32. Russo, F., Vallois, P.: Elements of Stochastic Calculus via Regularization. Séminaire de Probabilités XL, pp. 147–185. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Veretennikov, A.J.: On strong solutions and explicit formulas for solutions of stochastic integral equations. Matematicheskii Sbornik 153(3), 434–452 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Ecole d’Eté de Probabilités de Saint Flour XIV-1984, pp. 265–439. Springer, Berlin (1986)

    Google Scholar 

  35. Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drift. Math. USSR-Sbornik 22(1), 129–149 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gubinelli, M., Perkowski, N. (2018). Probabilistic Approach to the Stochastic Burgers Equation. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_35

Download citation

Publish with us

Policies and ethics