Skip to main content

Liouville Property of Harmonic Functions of Finite Energy for Dirichlet Forms

  • Conference paper
  • First Online:
Stochastic Partial Differential Equations and Related Fields (SPDERF 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 229))

Abstract

A quasi-regular Dirichlet form is said to have a Liouvill e property if any associated harmonic function of finite energy is constant. We first examine this property for the energy form \({\mathscr {E}}^\rho \) on \(\mathbb {R}^n\) generated by a positive function \(\rho .\) We next make a general consideration on a regular, strongly local and transient Dirichlet form \({\mathscr {E}}\) and an associated time changed symmetric diffusion process \(\check{X}\) with finite lifetime. We show that \(\check{X}\) always admits its one-point reflection \(\check{X}^*\) at infinity by constructing the corresponding regular Dirichlet form. We then prove that, if \({\mathscr {E}}\) satisfies the Liouville property, a symmetric conservative diffusion extension Y of \(\check{X}\) is unique up to a quasi-homeomorphism, and in fact, a quasi-homeomorphic image of Y equals the one-point reflection \(\check{X}^*\) of \(\check{X}\) at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albeverio, S., Ma, Z.-M., Röckner, M.: Quasi-regular Dirichlet forms and Markov processes. J. Func, Anal. 111, 118–154 (1993)

    Article  MathSciNet  Google Scholar 

  2. Beurling, A., Deny, J.: Dirichlet spaces. Proc. Nat. Acad. Sci. U.S.A. 45, 208–215 (1959)

    Article  MathSciNet  Google Scholar 

  3. Brelot, M.: Etude et extensions du principe de Dirichlet. Ann. Inst. Fourier 5, 371–419 (1953/54)

    Google Scholar 

  4. Chen, Z.-Q.: On reflected Dirichlet spaces. Probab. Theory Relat. Fields 94, 135–162 (1992)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.-Q., Fukushima, M.: On unique extension of time changed reflecting Brownian motions. Ann. Inst. Henri Poincaré Probab. Statist. 45, 864–875 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change and Boundary Theory. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  7. Chen, Z.-Q., Fukushima, M.: One-point reflections. Stoch. Process Appl. 125, 1368–1393 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.-Q., Fukushima, M.: Reflections at infinity of time changed RBMs on a domain with Liouville branches. J. Math. Soc. Jpn. (To appear)

    Google Scholar 

  9. Chen, Z.-Q., Ma, Z.-M., Röckner, M.: Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136, 1–15 (1994)

    Article  MathSciNet  Google Scholar 

  10. Deny, J.: Les potentiels d’énergie finie. Acta Math. 82, 107–183 (1950)

    Article  MathSciNet  Google Scholar 

  11. Deny, J.: Methods Hilbertiennes en théorie du potentiel. In: Potential Theory, pp. 121–120. Centro Internazional Mathematico Estivo, Edizioni Cremonese, Roma (1970)

    Google Scholar 

  12. Deny, J., Lions, J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5, 305–370 (1953/54)

    Google Scholar 

  13. Doob, J.L.: Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier 12, 574–621 (1962)

    Article  MathSciNet  Google Scholar 

  14. Fitzsimmons, P.J.: On the quasi-regularity of semi-Dirichlet forms. Potential Analysis 15, 151–185 (2001)

    Article  MathSciNet  Google Scholar 

  15. Fukushima, M.: On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities. J. Math. Soc. Jpn. 21, 58–93 (1969)

    Article  MathSciNet  Google Scholar 

  16. Fukushima, M.: Dirichlet spaces and strong Markov processes. Trans. Am. Math. Soc. 162, 185–224 (1971)

    Article  MathSciNet  Google Scholar 

  17. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin (1994). 2nd revised Edition (2010)

    Book  Google Scholar 

  18. Fukushima, M., Tanaka, H.: Poisson point processes attached to symmetric diffusions. Ann. Inst. Henri Poincaré Probab. Statist. 41, 419–459 (2005)

    Article  MathSciNet  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  20. Itô, S.: Fundamental solutions of parabolic differential equations and boundary value problems. Jpn. J. Math. 27, 65–102 (1957)

    Article  MathSciNet  Google Scholar 

  21. Levi, B.: Sul principio di Dirichlet. Rend. Palermo 22, 293–359 (1906)

    Google Scholar 

  22. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  Google Scholar 

  23. Maz’ja, V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Book  Google Scholar 

  24. Nikodym, O.: Sur une classe de fonctions considérées dans le problème de Dirichlet. Fund. Math. 21, 129–150 (1933)

    Article  Google Scholar 

  25. Silverstein, M.L.: Symmetric Markov Processes. Lecture Notes in Mathematics, vol. 426. Springer, Berlin (1974)

    MATH  Google Scholar 

  26. Silverstein, M.L.: The reflected Dirichlet space. Ill. J. Math. 18, 310–355 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Väisälä, J.: Uniform domains. Tohoku Math. J 40, 101–118 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Zhen-Qing Chen and Kazuhiro Kuwae for valuable discussions on the present subject. Indeed I owe the present proof of Proposition prop1.1 to their private communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fukushima, M. (2018). Liouville Property of Harmonic Functions of Finite Energy for Dirichlet Forms. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_2

Download citation

Publish with us

Policies and ethics