Skip to main content

Random Data Cauchy Problem for Some Dispersive Equations

  • Conference paper
  • First Online:
Stochastic Partial Differential Equations and Related Fields (SPDERF 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 229))

  • 1513 Accesses

Abstract

Dispersive equations with Hamiltonian structures possess interesting dynamical properties. This subject has attracted a lot of attention recently. We present a brief overview of recent works on the random data Cauchy problems for a Schrödinger-type equation, a wave equation, and a KdV-type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan, J., Wang, W.: Effective Dynamics of Stochastic Partial Differential Equations. Elsevier, New York (2014)

    MATH  Google Scholar 

  2. Lebowitz, J., Rose, H., Speer, E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988)

    Google Scholar 

  3. Bourgain, J.: Periodic Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    Google Scholar 

  4. Bourgain, J.: Invariant measures for the 2 D-defocusing nonlinear Schrödinger equation. Comm. Math. Phys. 176, 421–445 (1996)

    Google Scholar 

  5. Bourgain, J.: Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. Int. Math. Res. Not. 5, 253–283 (1998)

    Article  Google Scholar 

  6. Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^{2}(T)\). Duke Math. J. 161, 367–414 (2012)

    Google Scholar 

  7. Oh, T., Sulem, C.: On the one-dimensional cubic nonlinear Schrödinger equation below \(L^{2}\). Kyoto J. Math. 52, 99–115 (2012)

    Google Scholar 

  8. Nahmod, A.R., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. 14, 1275–1330 (2012)

    Article  MathSciNet  Google Scholar 

  9. Burq, N., Thomann, L., Tzvetkov, N.: Long time dynamics for the one dimensional nonlinear Schrödinger equation. Annales de I’institut Fourier 63, 2137–2198 (2013)

    Google Scholar 

  10. Deng, Y.: Two-dimensional nonlinear Schrödinger equation with random radial data. Anal. PDE. 5, 913–960 (2012)

    Article  MathSciNet  Google Scholar 

  11. Poiret, A.: Solutions globales pour des \(\acute{e}\)quation de Schr\(\ddot{o}\)dinger sur-critiques en toutes dimensions [Global solutions for supercritical Schrödinger equations in all dimensions]. arXiv:1207.3519

  12. Poiret, A.: Solutions globales pour I’\(\acute{e}\)quation de Schrödinger cubique en dimension 3[Global solutions for the cubic Schrödinger equation in dimension 3]. arXiv: 1207.1578

  13. Poiret, A., Robert, D., Thomann, L.: Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator. Anal. PDE. 7, 997–1026 (2014)

    Article  MathSciNet  Google Scholar 

  14. Bourgain, J., Bulut, A.: Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case. J. Eur. Math. Soc. 16, 1289–1325 (2014)

    Google Scholar 

  15. B\(\acute{e}\)nyi, A., Oh, T., Pocovnicu, O.: Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS. Excursions in Harmonic Analysis

    Google Scholar 

  16. B\(\acute{e}\)nyi, A., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(R^{d},\)\(d\ge 3\). Tran. Amer. Math. Soc. 2, 1–50 (2015)

    Google Scholar 

  17. Bourgain, J.: Invariant measures for NLS in infinite volume. Commun. Math. Phy. 210, 605–620 (2000)

    Article  MathSciNet  Google Scholar 

  18. Federico, C., de Suzzoni, A.S.: Invariant measure for the Schrödinger equation on the real line. J. Funct. Anal. 269, 271–324 (2015)

    Google Scholar 

  19. Hirayama, H., Okamoto, M.: Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity. arXiv:1505.06497

  20. Hirayama, H. Okamoto, M.: Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. arXiv:1508.02161

  21. Yan, W., Duan, J., Li Y.S.: Random data Cauchy problem for the fourth-order Schrödinger equation. Submitted (2017)

    Google Scholar 

  22. Oh, T.: Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system. SIAM J. Math. Anal. 41, 2207–2225 (2009)

    Google Scholar 

  23. Oh, T.: Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szeg\(\ddot{o}\) equation. Funkcial. Ekvac. 54, 335–365 (2011)

    Google Scholar 

  24. Oh, T.: Invariant Gibbs measures and a.s. global well posedness for coupled KdV systems. Diff. Int. Equ. 22, 637–668 (2009)

    Google Scholar 

  25. Deng, Y.: Invariance of the Gibbs measure for the Benjamin-Ono equation. J. Eur. Math. Soc. 17, 1107–1198 (2015)

    Article  MathSciNet  Google Scholar 

  26. Richard, G.: Invariance of the Gibbs measure for the periodic quartic gKdV. Ann. I. H. Poincar\(\acute{e}\)-AN. 33, 699–766 (2016)

    Google Scholar 

  27. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. pure. Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  Google Scholar 

  28. Birnir, B., Kenig, C.E., Ponce, G., Svanstedt, N., Vega, L.: On the ill-posedness of the IVP for generalized Korteweg-de Vries and nonlinear Schr\(\ddot{o}\)dinger equations. J. London Math. Soc. 53, 551–559 (1996)

    Google Scholar 

  29. Yan, W., Duan, J., Huang, J. H.: Random data Cauchy problem for a generalized KdV equation in the supercritical case. Submitted to J. Diff. Eqns. (2016)

    Google Scholar 

  30. Mckean, H.P., Vaninsky, K.L.: Trends and Perspective in Applied Mathematics. Statistical mechanics of nonlinear wave equations, pp. 239–264. Springer, New York (1994)

    Google Scholar 

  31. Burq, N., Tzvetkov, N.: Invariant measure for a three dimensional nonlinear wave equation. Int. Math. Res. Not. 22(Art. ID rnm108), 26 (2007)

    Google Scholar 

  32. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. I. Local Theory Invent. Math. 173, 449–475 (2008)

    Article  MathSciNet  Google Scholar 

  33. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations, II. Glob. Exist. Result Invent. Math. 173, 477–496 (2008)

    Article  Google Scholar 

  34. de Suzzoni, A.S.: Invariant measure for the cubic wave equation on the unit ball of \(R^{3}.\). Dyn. Partial Differ. Equ. 8, 127–147 (2011)

    Google Scholar 

  35. de Suzzoni, A.S.: Large data low regularity scattering results for the wave equation on the Euclidean space. Commun. Partial Differ. Equ. 38, 1–49 (2013)

    Article  MathSciNet  Google Scholar 

  36. de Suzzoni, A.S.: Convergence of the chioce of a particular basis of \(L^{2}(S^{3})\) for the cubic wave equation on the sphere and the Euclidean space. Commu. Pure Appl. Anal. 13, 991–1015 (2014)

    Google Scholar 

  37. Bourgain, J., Bulut, A.: Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball. J. Funct. Anal. 266, 2319–2340 (2014)

    Article  MathSciNet  Google Scholar 

  38. Burq, N., Tzvetkov, N.: Probabilistic well-posedness for the cubic wave equation. J. Eur. Math. Soc. 16, 1–30 (2014)

    Article  MathSciNet  Google Scholar 

  39. Burq, N., Thomann, L., Tzvetkov, N.: Global infinite energy solutions for the cubic wave equation. Bull. Soc. Math. Math. France 143, 301–313 (2015)

    Article  MathSciNet  Google Scholar 

  40. Xu, S.: Invariant Gibbs measures for 3D NLW in infinite volume. arXiv:1405.3856

  41. Duan, J., Huang, J. H., Li, Y. S., Yan, W.: Random data Cauchy problem for the supercritical wave equation on compact manifold. Submitted (2017)

    Google Scholar 

Download references

Acknowledgements

Part of this work was done while Wei Yan was visiting Department of Applied Mathematics, Illinois Institute of Technology, Chicago, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiao Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, W., Duan, J. (2018). Random Data Cauchy Problem for Some Dispersive Equations. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_15

Download citation

Publish with us

Policies and ethics