Skip to main content

Lower Bounds for Weak Approximation Errors for Spatial Spectral Galerkin Approximations of Stochastic Wave Equations

  • Conference paper
  • First Online:
Stochastic Partial Differential Equations and Related Fields (SPDERF 2016)

Abstract

Although for a number of semilinear stochastic wave equations existence and uniqueness results for corresponding solution processes are known from the literature, these solution processes are typically not explicitly known and numerical approximation methods are needed in order for mathematical modelling with stochastic wave equations to become relevant for real world applications. Therefore, the numerical analysis of convergence rates for such numerical approximation processes is required. A recent article by the authors proves upper bounds for weak errors for spatial spectral Galerkin approximations of a class of semilinear stochastic wave equations. The findings there are complemented by the main result of this work, that provides lower bounds for weak errors which show that in the general framework considered the established upper bounds can essentially not be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conus, D., Jentzen, A., Kurniawan, R.: Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients. ArXiv e-prints (Aug 2014), 59 pages. arXiv: 1408.1108 [math.PR]. Accepted in Ann. Appl. Probab.

  2. Davie, A.M., Gaines, J.G.: Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comput. 70, 233, 121–134 (2001). ISSN 0025-5718. https://doi.org/10.1090/S0025-5718-00-01224-2

  3. Hausenblas, E.: Weak approximation of the stochastic wave equation. J. Comput. Appl. Math. 235, 1, 33–58 (2010). ISSN 0377-0427. https://doi.org/10.1016/j.cam.2010.03.026

  4. Jacobe de Naurois, L., Jentzen, A., Welti, T.: Weak convergence rates for spatial spectral Galerkin approximations of semilinear stochastic wave equations with multiplicative noise. ArXiv e-prints (Aug 2015), 27 pages. arXiv: 1508.05168 [math.PR]. Accepted in Appl. Math. Optim.

  5. Jentzen, A., Kurniawan, R.: Weak convergence rates for Euler-type approximations of semilinear stochastic evolution equations with nonlinear diffusion coefficients. ArXiv e- prints (Jan 2015), 51 pages. arXiv: 1501.03539 [math.PR]

  6. Kovács, M., Larsson, S., Lindgren, F.: Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise. BIT 52, 1, 85–108 (2012). ISSN 0006-3835. https://doi.org/10.1007/s10543-011-0344-2

  7. Kovács, M., Larsson, S., Lindgren, F.: Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes. BIT 53, 2, 497–525 (2013). ISSN 0006-3835

    Google Scholar 

  8. Kovács, M., Lindner, F., Schilling, R.L.: Weak convergence of finite element approximations of linear stochastic evolution equations with additive Lévy noise. SIAM/ASA J. Uncertain. Quantif. 3, 1, 1159–1199 (2015). ISSN 2166-2525. https://doi.org/10.1137/15M1009792

  9. Müller-Gronbach, T., Ritter, K.: Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7, 2, 135–181 (2007). ISSN 1615-3375. https://doi.org/10.1007/s10208-005-0166-6

  10. Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes. Stoch. Dyn. 8, 3, 519–541 (2008). ISSN 0219-4937. https://doi.org/10.1142/S0219493708002433

  11. Sell, G.R., You, Y.: Dynamics of evolutionary equations, vol. 143. Applied Mathematical Sciences. Springer, New York, 2002, xiv+670. ISBN 0-387-98347-3. https://doi.org/10.1007/978-1-4757-5037-9

  12. Wang, X.: An exponential integrator scheme for time discretization of nonlinear stochastic wave equation. J. Sci. Comput. 64, 1, 234–263 (2015). ISSN 0885-7474. https://doi.org/10.1007/s10915-014-9931-0

Download references

Acknowledgements

This project has been partially supported through the ETH Research Grant ETH-47 15-2 “Mild stochastic calculus and numerical approximations for nonlinear stochastic evolution equations with Lévy noise”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arnulf Jentzen or Timo Welti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacobe de Naurois, L., Jentzen, A., Welti, T. (2018). Lower Bounds for Weak Approximation Errors for Spatial Spectral Galerkin Approximations of Stochastic Wave Equations. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_13

Download citation

Publish with us

Policies and ethics