Skip to main content

Sensitive Brain Tumor Detection Using GNS Nanoprobe

  • Chapter
  • First Online:
Multifunctional Gold Nanostars for Cancer Theranostics

Part of the book series: Springer Theses ((Springer Theses))

  • 252 Accesses

Abstract

Malignant brain tumors are one of the most lethal, heterogeneous, and difficult cancer forms to treat (Tagami et al in Nanomaterials in Pharmacology. Humana Press Inc., New York City, 2016 [1]; Han L et al in ACS Nano 10:4209–4218, 2016 [2]; Rutka et al in ACS Nano 8:9716–9722, 2014 [3]; Kircher et al in Nat Med 18:829–834, 2012 [4]; Kohler et al in J Nat Cancer Inst 103:714–736, 2011 [5]). For the most common malignant glioblastoma (GBM), an advanced grade IV astrocytoma, the median overall survival (OS) is only 15 months with current standard therapies (Krex et al in Brain 130:2596–2606, 2007 [6]). Tumor size has been found to be an independent prognostic factor and patients having small tumors when diagnosed have been reported to show longer OS and better prognosis (Mohammadi et al in J Neurosurg 126(3):1–9 (2016) [7]; Dempsey et al in AJNR Am J Neuroradiol 26:770–776, 2005 [8]). Therefore, novel methods for sensitive brain tumor detection offer an important prospect for significant improvement of patients’ outcomes. The current routine brain tumor diagnosis method is magnetic resonance imaging (MRI) with and without contrast agent enhancement (Schellinger et al in J Neurol Oncololgy 44:275–281,1999 [9]; Sze et al in Am J Neuroradiol 11:785–791, 1990 [10]). The size limit for brain tumor detection with MRI scan has been found to be 3–5 mm and it is highly challenging for MRI to detect a brain tumor less than 1 mm (Erdi in Radionuclide Ther 21:23–28, 2012 [11]; Yuh et al in Am J Neuroradiol 16:373–380, 1995 [12]). Positron emission tomography (PET) provides a sensitive 3D imaging modality (several orders of magnitude more sensitive than MRI for contrast agent detection), and has been applied in clinics for cancer detection using fluorodeoxyglucose ([18F]FDG) radiotracer due to higher glucose uptake in tumors than in normal tissues (Fletcher in J Nucl Med 49:480–508, 2008 [13]; Rohren et al in Radiology 231:305–332, 2004 [14]; Phelps in J Nucl Med 41:661–681, 2000 [15]; Bradley et al in Int J Radiat Oncol Biol Phys 59:78–86, 2004 [16]; Boellaard et al in Eur J Nucl Med Mol Imaging 37:181–200, 2010 [17]; Antoch et al in Radiology 229:526–533, 2003 [18]; MacManus et al in Radiother Oncol 91:85–94, 1999 [19]). However, PET imaging using [18F]FDG is not ideal for brain tumor detection due to the high glucose uptake in normal brain tissue, resulting in low tumor-to-normal (T/N) ratio and high false positive rates (Shreve et al in Radiographics 19:61–77, 1999 [20]). To date, no study has demonstrated the feasibility of submillimeter brain tumor detection using noninvasive diagnostic modalities. Sensitive submillimeter brain tumor detection is still an unmet clinical need of critical importance. Our GNS-based nanoprobe for PET imaging has potential to provide a novel method for early brain tumor detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tagami T, Taki M, Ozeki T (2016) Nanoparticulate drug delivery systems to overcome the blood-brain barrier. In: Lu ZR, Sakuma SN (eds) Nanomaterials in pharmacology. Humana Press Inc., New York City

    Google Scholar 

  2. Han L et al (2016) Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano 10:4209–4218

    Article  CAS  Google Scholar 

  3. Rutka JT, Kim B, Etame A, Diaz RJ (2014) Nanosurgical resection of malignant brain tumors: Beyond the cutting edge. ACS Nano 8:9716–9722

    Article  CAS  Google Scholar 

  4. Kircher MF et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834

    Article  CAS  Google Scholar 

  5. Kohler BA et al (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Nat Cancer Inst 103:714–736

    Article  Google Scholar 

  6. Krex D et al (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606

    Article  Google Scholar 

  7. Mohammadi AM et al (2016) Impact of the radiosurgery prescription dose on the local control of small (2 cm or smaller) brain metastases. J Neurosurg 126(3):1–9

    Google Scholar 

  8. Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol 26:770–776

    Google Scholar 

  9. Schellinger PD, Meinck HM, Thron A (1999) Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neurol Oncololgy 44:275–281

    Article  CAS  Google Scholar 

  10. Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791

    CAS  Google Scholar 

  11. Erdi YE (2012) Limits of tumor detectability in nuclear medicine and PET. Mol Imaging Radionuclide Ther 21:23–28

    Article  Google Scholar 

  12. Yuh WT, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ (1995) The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. Am J Neuroradiol 16:373–380

    CAS  Google Scholar 

  13. Fletcher JW et al (2008) Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med 49:480–508

    Article  Google Scholar 

  14. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  Google Scholar 

  15. Phelps ME (2000) PET: The merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    CAS  Google Scholar 

  16. Bradley J et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86

    Article  Google Scholar 

  17. Boellaard R et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200

    Article  Google Scholar 

  18. Antoch G et al (2003) Non-small cell lung cancer: Dual-modality PET/CT in preoperative staging. Radiology 229:526–533

    Article  Google Scholar 

  19. MacManus M et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94

    Article  Google Scholar 

  20. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77

    Article  CAS  Google Scholar 

  21. Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy—problems, solutions, and prospects. Microcirculation 23:173–182

    Article  CAS  Google Scholar 

  22. Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine 7:1225–1233

    Article  CAS  Google Scholar 

  23. Lesniak MS, Brem H (2004) Targeted therapy for brain tumours. Nat Rev Drug Discovery 3:499–508

    Article  CAS  Google Scholar 

  24. Nance EA et al (2012) A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 4(8149):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y. (2018). Sensitive Brain Tumor Detection Using GNS Nanoprobe. In: Multifunctional Gold Nanostars for Cancer Theranostics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-74920-4_5

Download citation

Publish with us

Policies and ethics