Skip to main content

The Lagrange and Markov Spectra from the Dynamical Point of View

  • Chapter
  • First Online:
  • 1259 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2213))

Abstract

This text grew out of my lecture notes for a 4-h minicourse delivered on October 17 and 19, 2016 during the research school “Applications of Ergodic Theory in Number Theory”—an activity related to the Jean-Molet Chair project of Mariusz Lemańczyk and Sébastien Ferenczi—realized at CIRM, Marseille, France. The subject of this text is the same as my minicourse, namely, the structure of the so-called Lagrange and Markov spectra (with a special emphasis on a recent theorem of C.G. Moreira).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\alpha \notin \mathbb {Q}\) is used here.

  2. 2.

    {x} := x −⌊x⌋ and \(\lfloor x\rfloor :=\max \{n\in \mathbb {Z}: n\leqslant x\}\) is the integer part of x.

  3. 3.

    I.e., q takes both positive and negative values.

  4. 4.

    I.e., \(k_n^2\in \mathbb {Q}\) for all \(n\in \mathbb {N}\).

  5. 5.

    Namely, the tree where Markov triples (x, y, z) are displayed after applying permutations to put them in normalized form \(x\leqslant y\leqslant z\), and two normalized Markov triples are connected if we can obtain one from the other by applying Vieta involutions.

  6. 6.

    This nomenclature will be justified later by Propositions 14.18 and 14.19 below.

  7. 7.

    Hint: Use induction and the fact that \([t_0; t_1,\dots , t_n, t_{n+1}] = [t_0; t_1,\dots , t_n+\frac {1}{t_{n+1}}]\).

  8. 8.

    Hint: Take \(q_{n-1}< q\leqslant q_n\), suppose that pq ≠ p n q n and derive a contradiction in each case q = q n , \(q_n/2\leqslant q<q_n\) and q < q n ∕2 by analysing \(|\alpha -\frac {p}{q}|\) and \(|\frac {p}{q}-\frac {p_n}{q_n}|\) like in the proof of Proposition 14.19.

  9. 9.

    From Number Theory rather than Differential Geometry.

  10. 10.

    See Sects. 14.2.2 and 14.2.3 below.

  11. 11.

    I.e., they involve Perron’s characterization of L and M, the study of Gauss map and/or the geodesic flow on the modular surface, etc.

  12. 12.

    I.e., the collections of “records” of height functions along orbits of dynamical systems.

  13. 13.

    I.e., for some constant C > 0, one has \(|\,f(x)-f(x')|\leqslant C |x-x'|{ }^{\alpha }\) for all x, x′∈ X.

  14. 14.

    I.e., β i doesn’t begin by β j for all i ≠ j.

  15. 15.

    Hint: For each word \(\beta _j\in (\mathbb {N}^*)^{r_j}\), let \(I(\beta _j)=\{[0;\beta _j, a_1,\dots ]:a_i\in \mathbb {N}\,\,\forall \,i\}=I_j\) and \(\psi |{ }_{I_j}:=G^{r_j}\) where G(x) = {1∕x} is the Gauss map.

  16. 16.

    Such a diffeomorphism h linearizing one branch of ψ always exists by Poincaré’s linearization theorem.

  17. 17.

    Cf. Exercise 14.46.

  18. 18.

    Thanks to the fact that their roots \(x_1, x_2\notin \mathbb {Q}\).

  19. 19.

    This choice of θ m is motivated by the discussion in Chapter 1 of Cusick-Flahive book [3].

  20. 20.

    See Lemma 2 in Chapter 1 of [3].

References

  1. P. Arnoux, Le codage du flot géodésique sur la surface modulaire. Enseign. Math. (2) 40(1–2), 29–48 (1994)

    Google Scholar 

  2. A. Cerqueira, C. Matheus, C.G. Moreira, Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Preprint (2016) available at arXiv:1602.04649

    Google Scholar 

  3. T. Cusick, M. Flahive, The Markoff and Lagrange Spectra. Mathematical Surveys and Monographs, vol. 30 (American Mathematical Society, Providence, RI, 1989), x+97 pp.

    Google Scholar 

  4. P.G. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen. pp. 633–638 Bericht über die Verhandlungen der Königlich Preussischen Akademie der Wissenschaften. Jahrg. 1842, S. 93–95

    Google Scholar 

  5. K. Falconer, The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85 (Cambridge University Press, Cambridge, 1986), xiv+162 pp.

    Google Scholar 

  6. G. Freiman, Non-coincidence of the spectra of Markov and of Lagrange. Mat. Zametki 3, 195–200 (1968)

    MathSciNet  Google Scholar 

  7. G. Freiman, Non-coincidence of the spectra of Markov and of Lagrange, in Number-Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition (Russian) (Kalinin. Gos. Univ, Moscow, 1973), pp. 10–15, 121–125

    Google Scholar 

  8. G. Freiman, Diophantine Approximations and the Geometry of Numbers (Markov’s Problem) (Kalininskii Gosudarstvennyi University, Kalinin, 1975), 144 pp.

    MATH  Google Scholar 

  9. M. Hall, On the sum and product of continued fractions. Ann. Math. (2) 48, 966–993 (1947)

    Article  MathSciNet  Google Scholar 

  10. D. Hensley, Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. J. Number Theory 40(3), 336–358 (1992)

    Article  MathSciNet  Google Scholar 

  11. P. Hubert, L. Marchese, C. Ulcigrai, Lagrange spectra in Teichmüller dynamics via renormalization. Geom. Funct. Anal. 25(1), 180–255 (2015)

    Article  MathSciNet  Google Scholar 

  12. A. Hurwitz, Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche, Math. Ann. 39(2), 279–284 (1891)

    Article  MathSciNet  Google Scholar 

  13. O. Jenkinson, M. Pollicott, Computing the dimension of dynamically defined sets: E2 and bounded continued fractions. Ergodic Theory Dyn. Syst. 21(5), 1429–1445 (2001)

    Article  Google Scholar 

  14. O. Jenkinson, M. Pollicott, Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: a hundred decimal digits for the dimension of E 2. Preprint (2016) available at arXiv:1611.09276

    Google Scholar 

  15. A. Khinchin, Continued Fractions (The University of Chicago Press, Chicago, London, 1964), xi+95 pp.

    Google Scholar 

  16. P. Lévy, Sur le développement en fraction continue d’un nombre choisi au hasard. Compos. Math. 3, 286–303 (1936)

    MATH  Google Scholar 

  17. K. Mahler, On lattice points in n-dimensional star bodies. I. Existence theorems. Proc. R. Soc. Lond. Ser. A 187, 151–187 (1946)

    Article  MathSciNet  Google Scholar 

  18. A. Markoff, Sur les formes quadratiques binaires indéfinies. Math. Ann. 17(3), 379–399 (1880)

    Article  MathSciNet  Google Scholar 

  19. J. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. (3) 4, 257–302 (1954)

    Article  MathSciNet  Google Scholar 

  20. H. McCluskey, A. Manning, Hausdorff dimension for horseshoes. Ergodic Theory Dyn. Syst. 3(2), 251–260 (1983)

    Article  MathSciNet  Google Scholar 

  21. C.G. Moreira, Geometric properties of the Markov and Lagrange spectra. Preprint (2016) available at arXiv:1612.05782

    Google Scholar 

  22. C.G. Moreira, Geometric properties of images of cartesian products of regular Cantor sets by differentiable real maps. Preprint (2016) available at arXiv:1611.00933

    Google Scholar 

  23. C.G. Moreira, S. Romaña, On the Lagrange and Markov dynamical spectra, Ergodic Theory Dyn. Syst. 1–22 (2016). https://doi.org/10.1017/etds.2015.121

  24. C.G. Moreira, J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. Math. (2) 154(1), 45–96 (2001)

    Google Scholar 

  25. C.G. Moreira, J.-C. Yoccoz, Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale. Ann. Sci. Éc. Norm. Supér. (4) 43(1), 1–68 (2010)

    Article  MathSciNet  Google Scholar 

  26. S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 50, 101–151 (1979)

    Article  MathSciNet  Google Scholar 

  27. J. Parkkonen, F. Paulin, Prescribing the behaviour of geodesics in negative curvature. Geom. Topol. 14(1), 277–392 (2010)

    Article  MathSciNet  Google Scholar 

  28. D. Witte Morris, Ratner’s Theorems on Unipotent Flows. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 2005), xii+203 pp.

    Google Scholar 

  29. D. Zagier, Eisenstein series and the Riemann zeta function, in Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979). Tata Institute of Fundamental Research Studies in Mathematics, vol. 10 (Tata Institute of Fundamental Research, Bombay, 1981), pp. 275–301

    Chapter  Google Scholar 

  30. D. Zagier, On the number of Markoff numbers below a given bound. Math. Comput. 39(160), 709–723 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Hurwitz Theorem

Given \(\alpha \notin \mathbb {Q}\), we want to show that the inequality

$$\displaystyle \begin{aligned}\left|\alpha-\frac{p}{q}\right|\leqslant\frac{1}{\sqrt{5}q^2}\end{aligned}$$

has infinitely many rational solutions.

In this direction, let α = [a 0;a 1, … ] be the continued fraction expansion of α and denote by [a 0;a 1, …, a n ] = p n q n . We affirm that, for every \(\alpha \notin \mathbb {Q}\) and every \(n\geqslant 1\), we have

$$\displaystyle \begin{aligned}\left|\alpha-\frac{p}{q}\right|<\frac{1}{\sqrt{5}q^2}\end{aligned}$$

for some \(\frac {p}{q}\in \{\frac {p_{n-1}}{q_{n-1}}, \frac {p_n}{q_n}, \frac {p_{n+1}}{q_{n+1}}\}\).

Remark 14.60

Of course, this last statement provides infinitely many solutions to the inequality \(\left |\alpha -\frac {p}{q}\right |\leqslant \frac {1}{\sqrt {5}q^2}\). So, our task is reduced to prove the affirmation above.

The proof of the claim starts by recalling Perron’s Proposition 14.20:

$$\displaystyle \begin{aligned}\alpha-\frac{p_n}{q_n} = \frac{(-1)^n}{(\alpha_{n+1}+\beta_{n+1})q_n^2}\end{aligned}$$

where α n+1 := [a n+1;a n+2, … ] and \(\beta _{n+1} = \frac {q_{n-1}}{q_n} = [0;a_n,\dots ,a_1]\).

For the sake of contradiction, suppose that the claim is false, i.e., there exists \(k\geqslant 1\) such that

$$\displaystyle \begin{aligned} \max\{(\alpha_k+\beta_k), (\alpha_{k+1}+\beta_{k+1}), (\alpha_{k+2}+\beta_{k+2})\}\leqslant \sqrt{5} \end{aligned} $$
(14.7)

Since \(\sqrt {5}<3\) and \(a_m\leqslant \alpha _m+\beta _m\) for all \(m\geqslant 1\), it follows from (14.7) that

$$\displaystyle \begin{aligned} \max\{a_k,a_{k+1},a_{k+2}\}\leqslant 2 \end{aligned} $$
(14.8)

If a m  = 2 for some \(k\leqslant m\leqslant k+2\), then (14.8) would imply that \(\alpha _m+\beta _m\geqslant 2+[0;2,1] = 2+\frac {1}{3}>\sqrt {5}\), a contradiction with our assumption (14.7).

So, our hypothesis (14.7) forces

$$\displaystyle \begin{aligned} a_k=a_{k+1}=a_{k+2}=1 \end{aligned} $$
(14.9)

Denoting by \(x=\frac {1}{\alpha _{k+2}}\) and \(y=\beta _{k+1} = q_{k-1}/q_k\in \mathbb {Q}\), we have from (14.9) that

$$\displaystyle \begin{aligned}\alpha_{k+1}=1+x, \quad\alpha_k = 1+\frac{1}{1+x}, \quad\beta_{k} = \frac{1}{y}-1, \quad\beta_{k+2} = \frac{1}{1+y}\end{aligned}$$

By plugging this into (14.7), we obtain

$$\displaystyle \begin{aligned} \max\left\{\frac{1}{1+x}+\frac{1}{y}, 1+x+y, \frac{1}{x}+\frac{1}{1+y}\right\}\leqslant \sqrt{5} \end{aligned} $$
(14.10)

On one hand, (14.10) implies that

$$\displaystyle \begin{aligned}\frac{1}{1+x}+\frac{1}{y}\leqslant \sqrt{5} \quad\mathrm{and} \quad1+x\leqslant \sqrt{5}-y.\end{aligned}$$

Thus,

$$\displaystyle \begin{aligned}\frac{\sqrt{5}}{y(\sqrt{5}-y)} = \frac{1}{\sqrt{5}-y}+\frac{1}{y}\leqslant \frac{1}{1+x}+\frac{1}{y}\leqslant\sqrt{5},\end{aligned}$$

and, a fortiori, \(y(\sqrt {5}-y)\geqslant 1\), i.e.,

$$\displaystyle \begin{aligned} \frac{\sqrt{5}-1}{2}\leqslant y\leqslant \frac{\sqrt{5}+1}{2} \end{aligned} $$
(14.11)

On the other hand, (14.10) implies that

$$\displaystyle \begin{aligned}x\leqslant \sqrt{5}-1-y \quad\mathrm{and} \quad\frac{1}{x}+\frac{1}{1+y}\leqslant \sqrt{5}.\end{aligned}$$

Hence,

$$\displaystyle \begin{aligned}\frac{\sqrt{5}}{(1+y)(\sqrt{5}-1-y)} = \frac{1}{\sqrt{5}-1-y}+\frac{1}{1+y}\leqslant \frac{1}{x}+\frac{1}{1+y}\leqslant\sqrt{5},\end{aligned}$$

and, a fortiori, \((1+y)(\sqrt {5}-1-y)\geqslant 1\), i.e.,

$$\displaystyle \begin{aligned} \frac{\sqrt{5}-1}{2}\leqslant y\leqslant \frac{\sqrt{5}+1}{2} \end{aligned} $$
(14.12)

It follows from (14.11) and (14.12) that \(y=(\sqrt {5}-1)/2\), a contradiction because \(y=\beta _{k+1}= q_{k-1}/q_k\in \mathbb {Q}\). This completes the argument.

Appendix 2: Proof of Euler’s Remark

Denote by \([0; a_1, a_2,\dots , a_n] = \frac {p(a_1,\dots ,a_n)}{q(a_1,\dots ,a_n)} = \frac {p_n}{q_n}\). It is not hard to see that

$$\displaystyle \begin{aligned} &q(a_1)=a_1, \quad q(a_1,a_2) = a_1a_2+1,\\ &q(a_1,\dots,a_n) = a_n q(a_1,\dots,a_{n-1}) + q(a_1,\dots,a_{n-2}) \,\,\,\,\forall\,\,n\geqslant 3. \end{aligned} $$

From this formula, we see that q(a 1, …, a n ) is a sum of the following products of elements of {a 1, …, a n }. First, we take the product a 1a n of all a i ’s. Secondly, we take all products obtained by removing any pair a i a i+1 of adjacent elements. Then, we iterate this procedure until no pairs can be omitted (with the convention that if n is even, then the empty product gives 1). This rule to describe q(a 1, …, a n ) was discovered by Euler.

It follows immediately from Euler’s rule that q(a 1, …, a n ) = q(a n , …, a 1). This proves Proposition 14.47.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matheus, C. (2018). The Lagrange and Markov Spectra from the Dynamical Point of View. In: Ferenczi, S., Kułaga-Przymus, J., Lemańczyk, M. (eds) Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics. Lecture Notes in Mathematics, vol 2213. Springer, Cham. https://doi.org/10.1007/978-3-319-74908-2_14

Download citation

Publish with us

Policies and ethics