Skip to main content

Application and Illustrative Examples

  • Chapter
  • First Online:
Explosions in Underground Coal Mines
  • 398 Accesses

Abstract

This chapter deals with coding the software program with the Visual Basic language. The computer program named “CCMER” (C omprehensive C onsultation M odel for E xplosion R isk in Mine Atmosphere) which is capable of all the analysing models mentioned in the previous chapters to provide a tool of predicting the gas species change trends and tracking of the explosibility of mine atmosphere at any time points has been developed. Case studies are also given to illustrate the applications of “CCMER”, the developed computer program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnaldos, J., Casal, J., & Planas-Cuchi, E. (2001). Prediction of flammability limits at reduced pressures. Chemical Engineering Science, 56(12), 3829–3843.

    Article  CAS  Google Scholar 

  • Bjerketvedt, D., Bakke, J. R., & Wingerden, K. V. (1997). Gas explosion handbook. Journal of Hazardous Materials, 52(1), 1–150.

    Article  CAS  Google Scholar 

  • Carona, M., Goethalsa, M., De Smedta, G., Berghmansa, J., Vliegenb, S., Van’t Oostb, E., & Van Den Aarssenb, A. (1999). Pressure dependence of the auto-ignition temperature of methane/air mixtures. Journal of Hazardous Materials, 65(3), 233–244.

    Article  Google Scholar 

  • Cashdollar, K. L., Zlochower, I. A., Green, G. M., Thomas, R. A., & Hertzberg, M. (2000). Flammability of methane, propane, and hydrogen gases. Journal of Loss Prevention in the Process Industries, 13, 327–340.

    Article  Google Scholar 

  • Cheng, J. (2012). Comprehensive and integrated model for atmospheric status in sealed underground mine areas. Morgantown: West Virginia University.

    Google Scholar 

  • Cheng, J. (2016). Assessment of mine ventilation system reliability using random simulation method. Environmental Engineering and Management Journal, 15, 841–850.

    Google Scholar 

  • Cheng, J., Liu, F., & Li, S. (2017). Modelling mine gas explosive pattern in underground mine gob and overlying strata. Paper submitted to International Journal of Oil, Gas and Coal Technology.

    Google Scholar 

  • Cheng, J., & Luo, Y. (2013). Modified explosive diagram for determining gas-mixture explosibility. Journal of Loss Prevention in the Process Industries, 26(4), 714–722.

    Article  CAS  Google Scholar 

  • Cheng, J., & Luo, Y. (2014). Modeling atmosphere composition and determining explosibility in a sealed coal mine volume. Archives of Mining Sciences, 59(1), 25–40.

    Article  CAS  Google Scholar 

  • Cheng, J., Luo, Y., & Zhou, F. (2015). Explosibility safety factor: An approach to assess mine gas explosion risk. Fire Technology, 51(2), 309–323.

    Article  Google Scholar 

  • Cheng, J., Cheng, W., & Zhang, S. (2012). Methods to determine the mine gas explosibility – An overview. Journal of Loss Prevention in the Process Industries, 25(3), 425–435.

    Article  CAS  Google Scholar 

  • Cheng, J., & Wei, L. (2014). Failure modes and manifestations in a mine gas explosion disaster. Journal of Failure Analysis & Prevention, 14(5), 601–609.

    Article  Google Scholar 

  • Cheng, J. W., & Yang, S. Q. (2011). Improved Coward explosive triangle for determining explosibility of mixture gas. Process Safety & Environmental Protection, 89(2), 89–94.

    Article  CAS  Google Scholar 

  • Cheng, J., & Yang, S. (2012). Data mining applications in evaluating mine ventilation system. Safety Science, 50(4), 918–922.

    Article  Google Scholar 

  • Cheng, J., & Zhou, F. (2013). A systematic approach to assess mine atmospheric status. Fire Safety Journal, 58(15), 142–150.

    Article  CAS  Google Scholar 

  • Cheng, J., & Zhou, F. (2015). Revised explosibility diagram to judge best practice of controlling an explosive gas-mixture. Fire Technology, 51(2), 293–308.

    Article  Google Scholar 

  • Cheng, J., Zhou, F., Chen, K., & Wei, L. (2014). Key considerations for coal mine ventilation system: A review. In F. von Glehn & M. Biffi (Eds.), 10th international mine ventilation congress (pp. 513–522). South African: Sun City.

    Google Scholar 

  • Du Plessis, J. (2014). Ventilation and occupational environment engineering in mines. Johannesburg: Mine Ventilaiton Scociety of South Africa.

    Google Scholar 

  • Hu, S., Feng, G., Xia, T., Li, Z., Jiang, H., Cheng, J., Gao, Q., Wang, Z., Zhang, Y., & Zhang, J. (2016). Changes on methane concentration after CO2 injection in a longwall gob: A case study. Journal of Natural Gas Science & Engineering, 29, 550–558.

    Article  CAS  Google Scholar 

  • Humphreys, D., & O’Beirne, T. (2000). Risk assessment based stone dusting and explosion barrier requirements, In Proc. Queensland mining industry health and safety conference. Townsville, Queensland (pp. 27–30).

    Google Scholar 

  • Jacobs, M., & Porter, I. (1998). Rapid generation of control charts for analysis of complex gas mixes in crisis situations. In E. Baafi (Ed.), Coal 1998: Coal operators’ conference (pp. 641–648). Wollongong: University of Wollongong & the Australian Institute of Mining and Metallurgy.

    Google Scholar 

  • Kondo, S., Takizawa, K., Takahashi, A., & Tokuhashi, K. (2006). Extended Le Chatelier’s formula for nitrogen dilution effect on flammability limits. Fire Safety Journal, 41(3), 406–417.

    Article  CAS  Google Scholar 

  • Luo, Y., Xiao, L., Cheng, J., & Li, M. (2012). Locating and determining the status of a thermal event in a longwall panel using mine atmosphere monitoring data. Transactions of the Society for Mining, Metallurgy, and Exploration, 332, 485–493.

    Google Scholar 

  • Ma, T., & Larrañaga, M. (2015). Theoretical flammability diagram for analyzing mine gases. Fire Technology, 51(2), 271–286.

    Article  Google Scholar 

  • Ma, T., Wang, Q., & Larrañaga, M. D. (2014). From ignition to suppression, a thermal view of flammability limits. Fire Technology, 50(3), 525–543.

    Article  Google Scholar 

  • SearchSOA. (2011), OOP. [Online]. http://searchsoa.techtarget.com/definition/object-oriented-programming

  • Vanderstraeten, B., Tuerlinckx, D., Berghmans, J., Vliegen, S., Vant Oost, E., & Smit, B. (1997). Flammability limits of methanerair mixtures at elevated pressure and temperature. Journal of Hazardous Materials, 56, 237–246.

    Article  CAS  Google Scholar 

  • Wikipedia. (2011). GUI. [Online]. http://en.wikipedia.org/wiki/Graphical_user_interface.

  • Yu, Z., Yang, S., Qin, Y., Hu, X. & Cheng, J. (2015). Experimental study on the goaf flow field of the “U+I” type ventilation system for a comprehensive mechanized mining face. International Journal of Mining Science and Technology, 25(6), 1003–1010.

    Article  Google Scholar 

  • Zigmund, J., & Janovsky, B. (2007). ‘Vybuchovy trojuhelnik’: A software tool for evaluation of explosibility of coal mine atmosphere. Journal of Loss Prevention in the Process Industries, 20(5), 517–522.

    Google Scholar 

  • Zipf, R. K., & Mohamed, K. M. (2010). Composition change model for sealed atmosphere in coal mines. In S. Hardcastle & D. McKinnon (Eds.), Proc. 13th United States/North American mine ventilation symposium (pp. 493–500). Sudbury: Laurentian University.

    Google Scholar 

  • Zipf, R. K., Sapko, M. J., & Brune, J. F. (2007). Explosion pressure design criteria for new seals in U.S. coal mines. Pittsburgh: National Institute for Occupational Safety and Health, IC9500 (p. 76)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, J. (2018). Application and Illustrative Examples. In: Explosions in Underground Coal Mines. Springer, Cham. https://doi.org/10.1007/978-3-319-74893-1_6

Download citation

Publish with us

Policies and ethics