The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

  • Lars KiewidtEmail author
  • Mirza Karamehmedović
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 99)


In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields, efficient solution of the underlying electromagnetic model, accurate description of the near field, and flexibility regarding the position and direction of the incident electron beam, that are advantageous for computation of EELS spectra. Within the chapter, we provide a derivation of the electromagnetic model and its connection to EELS spectra, and comprehensive validation of the implemented GMT regarding electromagnetic scattering and EELS.


Generalized Multipole Technique (GMT) EELS Spectra Electromagnetic Scattering Differential Scattering Cross Section (DSCS) Spheroidal Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Doicu, T. Wriedt, Near-field computation using the null-field method. J. Quant. Spectrosc. Radiat. Transf. 111, 466–473 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A. Doicu, Y.A. Eremin, T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, London, 2000)zbMATHGoogle Scholar
  3. 3.
    M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  4. 4.
    P. Drude, Zur Elektronentheorie der Metalle. Annalen der Physik 306, 566–613 (1900)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Drude, Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Annalen der Physik 308, 369–402 (1900)ADSCrossRefGoogle Scholar
  6. 6.
    L.B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, 1973)zbMATHGoogle Scholar
  7. 7.
    C. Forestiere, G. Iadarola, L.D. Negro, G. Miano, Near-field calculation based on the T-matrix method with discrete sources. J. Quant. Spectrosc. Radiat. Transf. 112, 2384–2394 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    F.J. García de Abajo, Electron energy loss and cathodoluminescence in spheres, Accessed 13 Sept 2012
  9. 9.
    F.J. García de Abajo, Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Phys. Rev. B: Condens. Matter. Mater. Phys. 59, 3095–3107 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    F.J. García de Abajo, A. Howie, Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 80, 5180–5183 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    A. Gopinath, S.V. Boriskina, B.M. Reinhard, L.D. Negro, Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt. Express 17, 3741–3753 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    C. Hafner, Beiträge zur Berechnung der Ausbreitung elektromagnetischer Wellen in zylindrischen Strukturen mit Hilfe des ‘Point-Matching-Verfahrens’. Ph.D. dissertation, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, CHE, 1980Google Scholar
  14. 14.
    C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990)Google Scholar
  15. 15.
    C. Hafner, L. Bomholt, The 3D Electromagnetic Wave Simulator (Wiley, Chichester, 1993)Google Scholar
  16. 16.
    M.F. Iskander, A. Lakhtakia, C.H. Durney, A new iterative procedure to solve for scattering and absorption by dielectric objects. Proc. IEEE 70, 1361–1362 (1982)CrossRefGoogle Scholar
  17. 17.
    P.B. Johnson, R.W. Christy, Optical constants of noble metals. Phys. Rev. B: Condens. Matter. Mater. Phys. 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    F. Kahnert, Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003)CrossRefGoogle Scholar
  19. 19.
    L. Kiewidt, Numerical inversion of EELS data for the estimation of quantum spectra of nanoparticles, Thesis, Department of Production Engineering, University of Bremen, Bremen, GER, M.Sc, 2012Google Scholar
  20. 20.
    L. Kiewidt, M. Karamehmedović, C. Matyssek, W. Hergert, L. Mdler, T. Wriedt, Numerical simulation of electron energy loss spectroscopy using a generalized multipole technique. Ultramicroscopy 133, 101–108 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Leidenberger, P. Schnle, C. Hafner, Simulations of a dielectric slot tip for scanning near-field microwave microscope. J. Comput. Theor. Nanosci. 8, 1556–1563 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Leviatan, P.G. Li, A.T. Adams, J. Perini, Single-post inductive obstacle in rectangular waveguide. IEEE Trans. Microw. Theory Tech. 31, 806–811 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    A.C. Ludwig, A comparison of spherical wave boundary value matching versus integral equation scattering solulions for a perfectly conducting body. IEEE Trans. Antennas Propag. 34, 857 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    A. Ludwig, The generalized multipole technique. Comput. Phys. Commun. 68, 306–314 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    C. Matyssek, J. Niegemann, W. Hergert, K. Busch, Computing electron energy loss spectra with the Discontiuous Galerkin Time-Domain method. Photonics Nanostructures: Fundam. Appl. 9, 367–373 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C. Matyssek, V. Schmidt, W. Hergert, T. Wriedt, The T-Matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles. Ultramicroscopy 117, 46–52 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Mohsen Raeis Zadeh Bajestani, M. Shahabadi, N. Talebi, Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique. J. Opt. Soc. Am. B 28, 937–943 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    E. Moreno, D. Erni, C.H.H. Vahldieck, Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. J. Opt. Soc. Am. A 19, 101–111 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems (Springer, New York, 2001)CrossRefzbMATHGoogle Scholar
  30. 30.
    M. Nishimura, S. Takamatsu, H. Shigesawa, A numerical analysis of electromagnetic scattering of perfect conducting cylinders by means of discrete singularity method improved by optimization process. Electron. Commun. Jpn. I 67, 75–81 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    N. Piller, O. Martin, Extension of the generalized multipole technique to three-dimensional anisotropic scatterers. Opt. Lett. 23, 579–581 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)Google Scholar
  33. 33.
    S. Prahl, Mie Scattering Calculator, Accessed 9 Aug 2012
  34. 34.
    A.D. Rakić, Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755–4767 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Rakić, A.B. Djurii, J.M. Elazar, M.L. Majewski, Optical properties of metallic films in vertical-cavity optoelectric devices. Appl. Opt. 37, 5271–5283 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    L.F. Shampine, Vectorized adaptive quadrature in MATLAB. J. Comput. Appl. Math. 211, 131–140 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    T. Wriedt (ed.), Generalized Multipole Techniques for Electromagnetic and Light Scattering (Elsevier, Amsterdam, 1999)Google Scholar
  38. 38.
    T. Wriedt, Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles. Part. Part. Syst. Charact. 19, 256–268 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Environmental Research and Sustainable TechnologyUniversity of BremenBremenGermany
  2. 2.Biobased Chemistry and Technology (BCT)Wageningen UniversityWageningenThe Netherlands
  3. 3.Department of Applied Mathematics and Computer Science and Department of PhysicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations