Skip to main content

MMP Simulation of Plasmonic Particles on Substrate Under E-Beam Illumination

  • Chapter
  • First Online:
The Generalized Multipole Technique for Light Scattering

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 99))

Abstract

A novel numerical approach to investigate the resonance behavior of plasmonic particles on a substrate under e-beam illumination is presented. The method is based on the Multiple Multipole Program (MMP), a generalized point matching technique, and is augmented by the ability to compute layered media and electron energy loss spectroscopy (EELS) measurements. Furthermore, the whole framework is complemented by a mesh-based method that automatically places the multipole expansions and matching points for arbitrary three-dimensional geometries. The performance of our technique is analyzed by a series of numerical experiments. The EELS responses of a plasmonic split-ring resonator in free space and a plasmonic disk dimer on a membrane, as well as the resonant modes, are simulated. Finally, our implementation is compared to the established discontinuous Galerkin time domain (DGTD) method with respect to its computational efficiency. We show significantly improved performance especially for the computation of EELS resonance maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Maier, H.A. Atwater, J. Appl. Phys. 98(1) (2005)

    Google Scholar 

  2. F.J. García de Abajo, Rev. Mod. Phys. 82(1), 209 (2010)

    Article  ADS  Google Scholar 

  3. B.W. Reed, J.M. Chen, N.C. MacDonald, J. Silcox, G.F. Bertsch, Phys. Rev. B 60, 5641 (1999)

    Article  ADS  Google Scholar 

  4. F.J. García de Abajo, A. Howie, Phys. Rev. B 65, 115418 (2002)

    Article  ADS  Google Scholar 

  5. N. Geuquet, L. Henrard, Ultramicroscopy 110(8), 1075 (2010)

    Article  Google Scholar 

  6. C. Matyssek, J. Niegemann, W. Hergert, K. Busch, Photonics Nan. Fundam. Appl. 9(4), 367 (2011)

    Google Scholar 

  7. C. Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers (Wiley, Chichester, 1999)

    Google Scholar 

  8. C. Hafner, Numerische Berechnung elektromagnetischer Felder - Grundlagen, Methoden, Anwendungen. PhD Thesis, ETH Zurich, Zurich (1987)

    Google Scholar 

  9. C. Hafner, OpenMaXwell, http://openmax.ethz.ch/

  10. J. Schöberl, Netgen mesh generator, http://sourceforge.net/projects/netgen-mesher/

  11. W.C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press series on Electromagnetic Waves (IEEE Press, New York, 1995)

    Google Scholar 

  12. G. Dural, M.I. Aksun, IEEE Trans. Microw. Theory and Tech. 43(7), 1545 (1995)

    Article  ADS  Google Scholar 

  13. A. Alparslan, Layered Media Green’s Functions: Derivation and Approximation Techniques for All Ranges and Materials (LAMBERT Academic Publishing, Saarbrücken, 2011)

    Google Scholar 

  14. A. Alparslan, Numerical analysis of photonic nano structures in layered geometries. PhD Thesis, ETH Zurich, Zurich (2013)

    Google Scholar 

  15. R. Golubovic, A.G. Polimeridis, J.R. Mosig, IEEE Trans. Antennas Propag. 60(5), 2409 (2012)

    Article  ADS  Google Scholar 

  16. M. Dogan, M.I. Aksun, A.K. Swan, B.B. Goldberg, M.S. Unlu, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26(6), 1458 (2009)

    Google Scholar 

  17. L.F. Shampine, J. Comput. Appl. Math. 211(2), 131 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. D.E. Amos, Package for bessel functions of a complex argument and nonnegative order, http://www.netlib.org/amos/index.html

  19. Tuxfamily, Eigen 3.1.2, http://eigen.tuxfamily.org/

  20. Intel, Intel math kernel library 11.0, http://software.intel.com/en-us/intel-mkl

  21. Intel, Intel threading building blocks 4.1, http://software.intel.com/en-us/intel-tbb

  22. F. von Cube, S. Irsen, J. Niegemann, C. Matyssek, W. Hergert, K. Busch, S. Linden, Opt. Mater. Express 1(5), 1009 (2011)

    Article  Google Scholar 

  23. F. von Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, S. Linden, Nano Lett. 13(2), 703 (2013)

    Article  ADS  Google Scholar 

  24. K. Busch, M. König, J. Niegemann, Laser Photonics Rev. 5(6), 773 (2011)

    Article  Google Scholar 

  25. F. von Cube, J. Niegemann, S. Irsen, D.C. Bell, S. Linden, Phys. Rev. B 89(11), 115434 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, U., Niegemann, J., Hafner, C., Leuthold, J. (2018). MMP Simulation of Plasmonic Particles on Substrate Under E-Beam Illumination. In: Wriedt, T., Eremin, Y. (eds) The Generalized Multipole Technique for Light Scattering. Springer Series on Atomic, Optical, and Plasma Physics, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-74890-0_6

Download citation

Publish with us

Policies and ethics