Advertisement

Convergent Fields Generated by Divergent Currents in the Method of Auxiliary Sources

  • George FikiorisEmail author
  • Nikolaos L. Tsitsas
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 99)

Abstract

A very simple scattering problem is considered, together with its solution obtained via the Method of Auxiliary Sources (MAS). We show that it is possible to concurrently have divergence of the auxiliary currents together with convergence of the scattered field generated by these divergent currents. The divergence manifests itself as rapid, unphysical oscillations in the auxiliary currents. It is stressed that the oscillations are not due to effects such as roundoff, matrix ill-conditioning, or to the well-studied phenomenon of internal resonances. We arrive at our conclusions using a number of means including asymptotic methods and a thorough discussion of the singularities of the analytic continuation of the scattered field. We also make a detailed comparison to corresponding discretizations of the Extended Integral Equation (EIE), in which similar phenomena do not occur. Analogies to superdirectivity and extensions to more complicated geometries are pointed out.

References

  1. 1.
    G. Fikioris, On two types of convergence in the method of auxiliary sources. IEEE Trans. Antennas Propag. 54, 2022–2033 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Fikioris, I. Psarros, On the phenomenon of oscillations in the method of auxiliary sources. IEEE Trans. Antennas Propag. 55, 1293–1304 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P.J. Papakanellos, G. Fikioris, A. Michalopoulou, On the oscillations appearing in numerical solutions of solvable and nonsolvable integral equations for thin-wire antennas. IEEE Trans. Antennas Propag. 58, 1635–1644 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Fikioris, N.L. Tsitsas, I. Psarros, On the nature of oscillations in discretizations of the extended integral equation. IEEE Trans. Antennas Propag. 59, 1415–1419 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C.A. Valagiannopoulos, N.L. Tsitsas, G. Fikioris, Convergence analysis and oscillations in the method of fictitious sources applied to dielectric scattering problems. J. Opt. Soc. Am. A. 29, 1–10 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    P. Andrianesis, G. Fikioris, Superdirective-type near fields in the method of auxiliary sources (MAS). IEEE Trans. Antennas Propag. 60, 3056–3060 (2012)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Fikioris, N.L. Tsitsas, G.K. Charitos, Spurious oscillations in a combined method-of-auxiliary-sources/extended-integral-equation solution to a simple scattering problem. J. Quant. Spectrosc. Radiat. Transf. (Special Issue, Peter C. Waterman and his Scientific Legacy) 123, 30–40 (2013)Google Scholar
  8. 8.
    G. Fikioris, O.N. Bakas, Study of convergence, divergence, and oscillations in method-of-auxiliary-sources (MAS) and extended-integral-equation (EIE) solutions to a simple cavity problem. IEEE Trans. Microw. Theory Tech. 61, 2773–2782 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    G. Fikioris, N.L. Tsitsas, On convergence and inherent oscillations within computational methods employing fictitious sources. Comput. Math. Appl. 69, 636–649 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C.A. Balanis, Antenna Theory, Analysis and Design, 4th edn. (Wiley, New York, 2016) (sec. 6.9)Google Scholar
  11. 11.
    A.E. Krasnok, P.A. Belov, A.E. Miroshnichenko, A.I. Kuznetsov, B.S. Luk’yanchuk, Yu.S. Kivshar, All-dielectric optical nanoantennas, in Progress in Compact Antennas, ed. by L. Huitema (2014), http://www.intechopen.com/books/progress-in-compactantennas/all-dielectric-optical-nanoantennas
  12. 12.
    N.L. Tsitsas, E.G. Alivizatos, H.T. Anastassiu, D.I. Kaklamani, Optimization of the method of auxiliary sources (MAS) for scattering by an infinite cylinder under oblique incidence. Electromagnetics 25, 39–54 (2005)CrossRefGoogle Scholar
  13. 13.
    C.W. Groetsch, Inverse Problems in the Mathematical Sciences (Vieweg, Braunschweig, 1993), p. 92Google Scholar
  14. 14.
    C.W. Groetsch, Integral equations of the first kind, inverse problems and regularization: a crash course. Proc. J. Phys.: Conf. Ser. 73, 1–32 (2007)Google Scholar
  15. 15.
    R. Kress, Linear Integral Equations, 3rd edn. (Springer, New York, 2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    N.P. Malakshinov, V.G. Yerikhov, On one numerical method for solving diffraction problems. Antennas 25, 53–65 (1977) (in Russian)Google Scholar
  17. 17.
    S.P. Skobelev, Comments on “superdirective-type near fields in the method of auxiliary sources” (with authors reply). IEEE Trans. Antennas Propag. 61, 2360 (2013)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Y.I. Bobrovniskii, T.M. Tomilina, General properties and fundamental errors of the method of equivalent sources. Acoust. Phys. 41, 737–750 (1995) (in Russian)Google Scholar
  19. 19.
    A.H. Barnett, T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Digital Library of Mathematical Functions. National Institute of Standards and Technology, http://dlmf.nist.gov/
  21. 21.
    Y. Leviatan, Analytic continuation considerations when using generalized formulations for scattering problems. IEEE Trans. Antennas Propag. 38, 1259–1263 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    M.L. Burrows, Example of the generalised-function validity of the Rayleigh hypothesis. Electron. Lett. 5, 694–695 (1969)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Leviatan, A. Boag, A. Boag, Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies—theory and numerical solution. IEEE Trans. Antennas Propag. 36, 1722–1734 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    R.M. Gray, Toeplitz and circulant matrices: a review (2002), http://ee.stanford.edu/~gray/toeplitz.pdf
  25. 25.
    R. Vescovo, Inversion of block-circulant matrices and circular array approach. IEEE Trans. Antennas Propag. 45, 1565–1567 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    R.W.P. King, G. Fikioris, R.B. Mack, Cylindrical Antennas and Arrays (Cambridge University Press, Cambridge, 2002) (secs. 4.5 and 10.3)Google Scholar
  27. 27.
    A. Doicu, Y. Eremin, T. Wriedt, Acoustic and Electromagnetic Scattering Using Discrete Sources (Academic Press, London, 2000)zbMATHGoogle Scholar
  28. 28.
    R. Kress, Numerical Analysis (Springer, New York, 1998) (sec. 9.4)Google Scholar
  29. 29.
    T. Wriedt (ed.), Generalized multipole techniques for electromagnetic and light scattering, Computational Methods in Mechanics (Elsevier, Amsterdam, 1999)Google Scholar
  30. 30.
    B.Z. Katsenelenbaum, Nonapproximable diagrams and nonradiating currents. J. Commun. Technol. Electron. 38, 112–118 (1993) (originally published in Radiotekhnika i elektronika 6, 998–1005 (1993))Google Scholar
  31. 31.
    B.Z. Katsenelenbaum, Electromagnetic Fields: Restrictions and Approximations (Wiley-VCH, Weinheim, 2003)CrossRefGoogle Scholar
  32. 32.
    D. Margetis, G. Fikioris, J.M. Myers, T.T. Wu, Highly directive current distributions: general theory. Phys. Rev. E 58, 2531–2547 (1998)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984), p. 51Google Scholar
  34. 34.
    R.F. Millar, The analytic continuation of solutions to elliptic boundary value problems in two independent variables. J. Math. Anal. Appl. 76, 498–515 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    R.F. Millar, Singularities and the Rayleigh hypothesis for solutions to the Helmholtz equation. IMA J. Appl. Math. 37, 155–171 (1986)Google Scholar
  36. 36.
    H.T. Anastassiu, D.G. Lymperopoulos, D.I. Kaklamani, Accuracy analysis and optimization of the method of auxiliary sources (MAS) for scattering by a circular cylinder. IEEE Trans. Antennas Propag. 52, 1541–1547 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    P.C. Waterman, Matrix formulation for electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)CrossRefGoogle Scholar
  38. 38.
    P.C. Waterman, New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417–1429 (1968)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    P.A. Martin, On the null-field equations for the exterior problems of acoustics. Q. J. Mech. Appl. Math. 33, 385–396 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)Google Scholar
  41. 41.
    D. Colton, R. Kress, The unique solvability of the null field equations of acoustics. Q. J. Mech. Appl. Math. 36, 87–95 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    A.G. Dallas, On the convergence and numerical stability of the second Waterman scheme for approximation of the acoustic field scattered by a hard object. Technical report, Department of Mathematical Sciences, University of Delaware, No. 2000-7:1-35 (2000)Google Scholar
  43. 43.
    B. Peterson, S. Ström, T matrix formulation of electromagnetic scattering from multilayered scatterers. Phys. Rev. D 10, 2670–2684 (1974)ADSCrossRefGoogle Scholar
  44. 44.
    T. Wriedt, A. Doicu, Comparison between various formulations of the extended boundary condition method. Opt. Commun. 142, 91–98 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    W.C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995), pp. 453–460Google Scholar
  46. 46.
    F.M. Kahnert, Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003)CrossRefGoogle Scholar
  47. 47.
    M.I. Mishchenko, G. Videen, V.A. Babenko, N.I. Khlebtsov, T. Wriedt, T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transf. 88, 357–406 (2004)CrossRefGoogle Scholar
  48. 48.
    R.A. Shore, A.D. Yaghjian, Dual-surface integral equations in electromagnetic scattering. IEEE Trans. Antennas Propag. 53, 1706–1709 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    H.A. Schenck, Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 44, 41–58 (1967)ADSCrossRefGoogle Scholar
  50. 50.
    T. Wriedt, Review of the null-field method with discrete sources. J. Quant. Spectrosc. Radiat. Transf. 106, 535–545 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    A.G. Kyurkchan, N.I. Smirnova, Generalization of the method of extended boundary conditions. J. Commun. Technol. Electron. 53, 767–774 (2008)Google Scholar
  52. 52.
    A.G. Kyurkchan, N.I. Smirnova, Solution of wave diffraction problems by the null-field method. Acoust. Phys. 55, 691–687 (2009)Google Scholar
  53. 53.
    A.G. Kyurkchan, Using apriory information about analytic properties of the solution on mathematical modeling in wave diffraction and propagation theory, in Proceedings of the 13th International Conference on Mathematics Methods in Electromagnetic Theory, Kyiv, Ukraine (2010), pp. 57–60Google Scholar
  54. 54.
    S.P. Skobelev, Some features of the null field method and method of auxiliary sources, in Proceedings of the 13th International Conference on Mathematics Methods in Electromagnetic Theory, Kyiv, Ukraine (2010), pp. 350–353Google Scholar
  55. 55.
    Yu.A. Eremin, A.G. Sveshnikov, S.P. Skobelev, Null field method in wave diffraction problems. Comput. Math. Math. Phys. 51, 1391–1394 (2011)Google Scholar
  56. 56.
    Yu.A. Eremin, S.P. Skobelev, On a generalization of the extended boundary condition method. J. Commun. Technol. Electron. 56, 1305–1310 (2011)Google Scholar
  57. 57.
    G. Fikioris, J. Lionas, C.G. Lioutas, The use of the frill generator in thin-wire integral equations. IEEE Trans. Antennas Propag. 51, 1847–1854 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    A.N. Tikhonov, V.Y. Arsenin, Solutions of ill-posed problems (translated from the Russian by F. John) (Wiley, New York, 1977), p. 82Google Scholar
  59. 59.
    V.B. Glasko, Inverse Problems of Mathematical Physics (American Institute of Physics, New York, 1988), p. 9Google Scholar
  60. 60.
    A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer, New York, 1996), p. 13Google Scholar
  61. 61.
    B. Noble, The numerical solution of integral equations, in The State of the Art in Numerical Analysis, ed. by D. Jacobs (Academic Press, New York, 1976), p. 939Google Scholar
  62. 62.
    N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM Publications, Philadelphia, 2002) (sec. 1.18)Google Scholar
  63. 63.
    N.L. Tsitsas, E.G. Alivizatos, H.T. Anastassiu, D.I. Kaklamani, Optimization of the method of auxiliary sources (MAS) for oblique incidence scattering by an infinite dielectric cylinder. Electr. Eng. 89, 353–361 (2007)CrossRefGoogle Scholar
  64. 64.
    G. Anderson, H. Sprott, B.R. Olsen, Opinion: publish negative results; non-confirmatory or negative results are not worthless. The Scientist, 15 Jan 2013, http://www.the-scientist.com/?articles.view/articleNo/33968/title/Opinion--Publish-Negative-Results/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations