Fictitious Particle Approach for Light Scattering Investigation from the Line Features of a Substrate Based on the Discrete Sources Method

  • Yuri Eremin
  • Thomas WriedtEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 99)


Computer simulation of light scattering from features on plane interfaces is of interest in the semiconductor and nanoelectronic industry. Submicrometer defects on silicon substrates are detected and characterized by in-line laser scanning surface inspection systems. A reliable computer model for predicting this light scattering would provide a flexible and efficient tool for efficient surface features detection and discrimination. Based on the Discrete Sources Method (DSM) a new fictitious particle concept has been elaborated and realized. Based on this conception an updated DSM computer model enables to analyze light scattering from line defects of a plane silicon substrate such as a line bump and a pit. Computer simulation results corresponding to the Scattering Cross-Section (SCS) for P/S polarized excitation are presented. It was found that the Total Scattering Cross-Section (TSC) can be change by an order of magnitude depending on the orientation of the linear feature with respect to the plane wave incident direction.


Discrete Source Method (DSM) Fictitious Particle Line Bump Total Scat Tering Cross Section (TSC) Reliable Computer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge funding of this research by Deutsche Forschungsgemeinschaft (DFG) and Russian Foundation for Basic Research (RFBR).


  1. 1.
    N.G. Khlebtsov, L.A. Dykman, J. Quant. Spectrosc. Radiat. Transf. 111, 1–35 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    L. Novotny, N. van Hulst, Nat. Photonics 2, 83–90 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    H.-W. Chang, J. Lee, S. Hofmann, Y.H. Kim, L. Müller-Meskamp, B. Lüssem, C.-C. Wu, K. Leo, M.C. Gather, J. Appl. Phys. 113, 204502 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    E. Eremina, Yu. Eremin, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 100, 131–136 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Teulle, R. Marty, C. Girard, A. Arbouet, E. Dujardin, Opt. Commun. 291, 412–415 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    V. Jindal, Solid State Technol. 56(3), 1–5 (2013)MathSciNetGoogle Scholar
  7. 7.
    A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House, Norwood, 2005)zbMATHGoogle Scholar
  8. 8.
    Ch. Hafner, Boundary methods for optical nano structures. J. Phys. Stat. Sol. B. 244, 3435–3447 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    I.R. Capoglu, G.S. Smith, IEEE Trans. Antennas Propag. 52, 3805–3814 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J. Jin, Finite Element Method in Electromagnetics (Wiley, New York, 2002)zbMATHGoogle Scholar
  11. 11.
    J. Alegret, P. Johansson, M. Kall, New J. Phys. 10, 105004 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    D. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983)zbMATHGoogle Scholar
  13. 13.
    Yu.A. Eremin, E.V. Zakharov, N.I. Nesmeyanova, The method of fundamental solutions in problems of diffraction of electromagnetic waves by bodies of revolution, Seven Papers in Applied Mathematics, vol. 125, American Mathematical Society Translations: Series 2 (1986), pp. 51–66Google Scholar
  14. 14.
    V.L.Y. Loke, M.P. Mengüç, T.A. Nieminen, J. Quant. Spectrosc. Radiat. Transf. 112, 1711–1725 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Yurkin, Computational approaches for plasmonics, in Handbook of Molecular Plasmonics, ed. by S. D’Agostino (Pan Stanford Publishing, Singapore, 2013), pp. 83–135CrossRefGoogle Scholar
  16. 16.
    T. Søndergaard, Phys. Status Solidi B Basic Res. 244(10), 3448–3462 (2007)Google Scholar
  17. 17.
    Yu.A. Eremin, V.I. Ivakhnenko, Analysis of inhomogenities on substrates based on integral transformation method. Differ. Equ. 36(9), 137–1380 (2000)Google Scholar
  18. 18.
    M.I. Mishchenko, N.T. Zakharova, N.G. Khlebtsov, T. Wriedt, G. Videen, J. Quant. Spectrosc. Radiat. Transf. 146, 349–354 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A.M. Kern, O.J.F. Martin, J. Opt. Soc. Am. A 26, 732–740 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Ch. Hafner, J. Smajic, M. Agio, Numerical methods for the electrodynamic analysis of nanostructures, in Nanoclusters and Nanostructured Surfaces, ed. by A.K. Ray (American Scientific Publishers, Stevenson Ranch, 2010), pp. 207–274Google Scholar
  21. 21.
    E. Eremina, Y. Eremin, T. Wriedt, J. Modern Opt. 58(5–6), 384–399 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kahnert, Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review. J. Quant. Spectrosc. Radiat. Transf. 178, 22–37 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    B. Gallinet, J. Butet, O.J.F. Martin, Numerical methods for nanophotonics: standard problems and future challenges (Review). Laser Photonics Rev. 9(6), 577–603 (2015)CrossRefGoogle Scholar
  24. 24.
    Ch. Hafner, Post-modern Electromagnetics. Using Intelligent MaXwell Solvers (Wiley, New York, 1999)Google Scholar
  25. 25.
    Yu.A. Eremin, Differ. Equ. 45(9), 1379–1385 (2009)Google Scholar
  26. 26.
    R. Schaback, H. Wendland, Acta Numer. 15, 543–639 (2006)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Yu.A. Eremin, N.V. Orlov, A.G. Sveshnikov, in Generalizes Multipole Techniques for Electromagnetic and Light Scattering, ed. by T. Wriedt (Elsevier Science, Amsterdam, 1999), pp. 39–80Google Scholar
  28. 28.
    A. Doicu, Yu.A. Eremin, T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, New York, 2000)Google Scholar
  29. 29.
    H. Fujiwara, Spectroscopic Ellipsometry. Principles and Applications (Wiley, New York, 2007)CrossRefGoogle Scholar
  30. 30.
    Yu.A. Eremin, A.G. Sveshnikov, Comput. Math. Math. Phys. 39(12), 1967–1980 (1999)Google Scholar
  31. 31.
    W.C. Chew, Waves and Fields in Inhomogeneous Media (Wiley-IEEE Press, 1999)Google Scholar
  32. 32.
    N.S. Bahvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (MIR, Moscow, 1977)Google Scholar
  33. 33.
    A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications (Springer, New York, 2003)zbMATHGoogle Scholar
  34. 34.
    V.A. Morozov, Regularization Methods For Ill Posed Problems (Springer, Berlin, 1984)Google Scholar
  35. 35.
    M. Mori, M. Sugihara, J. Comput. Appl. Math. 127, 287–296 (2001)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    E. Eremina, Y. Eremin, N. Grishina, T. Wriedt, J. Opt. 14(1), 015001 (2012)Google Scholar
  37. 37.
    Yu.A. Eremin, J.C. Stover, N.V. Orlov, Opt. Eng. 38(8), 1296–1304 (1999)Google Scholar
  38. 38.
    Yu. Eremin, T. Wriedt, Comput. Phys. Commun. 198, 12–21 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
  40. 40.
    J.C. Stover, Optical Scattering: Measurement and Analysis (SPIE Press, Bellingham, 2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Leibniz-Institut für Werkstofforientierte Technologien—IWTBremenGermany

Personalised recommendations