Advertisement

The Invariant Imbedding T Matrix Approach

  • Adrian Doicu
  • Thomas WriedtEmail author
Chapter
  • 504 Downloads
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 99)

Abstract

The theoretical foundation of the invariant imbedding \(\mathbf {T}\)-matrix method is revised. We present a consistent analysis of the method, show the connection with the superposition \(\mathbf {T}\)-matrix method, and derive new recurrence relations for \(\mathbf {T}\)-matrix calculation. The first recurrence is a numerical method for integrating the Riccati equations by using the Pade approximation to the matrix exponential, while the second one relies on an integral-matrix approach.

References

  1. 1.
    L. Bi, P. Yang, G. Kattawar, M. Mishchenko, J. Quant. Spectrosc. Radiat. Trans. 116, 169 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    L. Bi, P. Yang, G. Kattawar, M. Mishchenko, J. Quant. Spectrosc. Radiat. Trans. 123, 17 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    L. Tsang, J. Kong, R. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985)Google Scholar
  4. 4.
    B. Johnson, Appl. Opt. 27, 4861 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    E. Davison, M. Maki, IEEE Trans. Autom. Control 18, 71 (1973)CrossRefGoogle Scholar
  6. 6.
    C. Kenney, R. Leipnik, IEEE Trans. Autom. Control 30, 962 (1985)CrossRefGoogle Scholar
  7. 7.
    R. Leipnik, Bull. Aust. Math. Soc. 26, 355 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Schiff, S. Shnider, SIAM J. Numer. Anal. 36, 1392 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Remote Sensing Technology Institute German Aerospace Centre (DLR)OberpfaffenhofenGermany
  2. 2.Leibniz-Institut für Werkstofforientierte Technologien—IWTBremenGermany

Personalised recommendations