Advertisement

Hyperons and Resonances in Nuclear Matter

  • Horst Lenske
  • Madhumita Dhar
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 948)

Abstract

Theoretical approaches to interactions of hyperons and resonances in nuclear matter and their production in elementary hadronic reactions and heavy ion collisions are discussed. The focus is on baryons in the lowest SU(3) flavor octet and states from the SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. SU(3) symmetry breaking is discussed for the Lambda hyperon. The symmetry conserving Lambda-Sigma mixing is investigated. In asymmetric nuclear matter a mixing potential, driven by the rho- and delta-meson mean-fields, is obtained. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

Notes

Acknowledgements

Many members and guests of the Giessen group have been contributing to the work summarized in this article. Contributions especially by C. Keil and A. Fedoseew, S. Bender, Th. Gaitanos (now at U. Thessaloniki), R. Shyam (Saha Institute, Kolkatta), and V. Shklyar are gratefully acknowledged. Supported by DFG, contract Le439/9 and SFB/TR16, project B7, BMBF, contract 05P12RGFTE, GSI Darmstadt, and Helmholtz International Center for FAIR.

References

  1. 1.
    G.D. Rochester, C.C. Butler, Nature 160, 855 (1947). https://doi.org/10.1038/160855a0
  2. 2.
    M. Danysz, J. Pniewski, Phil. Mag. 44, 348 (1953)Google Scholar
  3. 3.
    M. Agnello et al., Nucl. Phys. A 881, 269 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.015
  4. 4.
    T.R. Saito et al., Nucl. Phys. A 954, 199 (2016). https://doi.org/10.1016/j.nuclphysa.2016. 05.011
  5. 5.
    C. Rappold et al., Phys. Lett. B 728, 543 (2014). https://doi.org/10.1016/j.physletb.2013. 12.037
  6. 6.
    N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Lett. B 754, 6 (2016). https://doi.org/10.1016/j.physletb.2016.01.005
  7. 7.
    N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Production of multistrange hadrons, light nuclei and hypertriton in central Au+ Au collisions at \(\sqrt {s_{NN}} = 11.5\) and 200 GeV. Phys. Lett. B754, 6–10 (2016). https://doi.org/10.1016/j.physletb.2016.01.005
  8. 8.
    T.P. Cheng, L.F. Li, Gauge Theory of Elementary Particle Physics (Clarendon (Oxford Science Publications), Oxford, 1984), 536 pp.Google Scholar
  9. 9.
    J.I. Friedman, H.W. Kendall, Ann. Rev. Nucl. Part. Sci. 22, 203 (1972).  https://doi.org/10.1146/annurev.ns.22.120172.001223
  10. 10.
    A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88(3), 035004 (2016).  https://doi.org/10.1103/RevModPhys.88.035004
  11. 11.
    I. Bednarek, P. Haensel, J.L. Zdunik, M. Bejger, R. Manka, Astron. Astrophys. 543, A157 (2012). https://doi.org/10.1051/0004-6361/201118560
  12. 12.
    J. Benlliure et al., JPS Conf. Proc. 6, 020039 (2015).  https://doi.org/10.7566/JPSCP.6.020039
  13. 13.
    O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006). https://doi.org/10.1016/j.ppnp.2005.07.001
  14. 14.
    A. Gal, O. Hashimoto, J. Pochodzalla, Nucl. Phys. A 881, 1 (2012)Google Scholar
  15. 15.
    A. Feliciello, T. Nagae, Rep. Prog. Phys. 78(9), 096301 (2015). https://doi.org/10.1088/0034-4885/78/9/096301
  16. 16.
    A. Gal, J. Pochodzalla (eds.), Nucl. Phys. A 954 (2016)Google Scholar
  17. 17.
    D. Blaschke et al. (eds.), Eur. Phys. J. A 52 (2016)Google Scholar
  18. 18.
    H. Lenske, M. Dhar, T. Gaitanos, X. Cao, Baryons and baryon resonances in nuclear matter. Prog. Part. Nucl. Phys. 98, 119–206 (2018). https://doi.org/10.1016/j.ppnp.2017.09.001
  19. 19.
    T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999).  https://doi.org/10.1103/PhysRevC.59.21
  20. 20.
    T.A. Rijken, Phys. Rev. C 73, 044007 (2006).  https://doi.org/10.1103/PhysRevC.73.044007
  21. 21.
    T.A. Rijken, Y. Yamamoto, Phys. Rev. C 73, 044008 (2006).  https://doi.org/10.1103/PhysRevC.73.044008
  22. 22.
    T.A. Rijken, M.M. Nagels, Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010).  https://doi.org/10.1143/PTPS.185.14
  23. 23.
    Y. Yamamoto, T. Furumoto, N. Yasutake, T.A. Rijken, Phys. Rev. C 90, 045805 (2014).  https://doi.org/10.1103/PhysRevC.90.045805
  24. 24.
    T.A. Rijken, H.J. Schulze, Eur. Phys. J. A 52(2), 21 (2016).  https://doi.org/10.1140/epja/i2016-16021-6
  25. 25.
    J. Haidenbauer, U.G. Meissner, A. Nogga, H. Polinder, Lect. Notes Phys. 724, 113 (2007). https://doi.org/10.1007/978-3-540-72039-3_4
  26. 26.
    B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500, 485 (1989). https://doi.org/10.1016/0375-9474(89)90223-6
  27. 27.
    A. Reuber, K. Holinde, J. Speth, Nucl. Phys. A 570, 543 (1994). https://doi.org/10.1016/0375-9474(94)90073-6
  28. 28.
    M. Dhar, H. Lenske, in Proceedings of the 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015) (2017).  https://doi.org/10.7566/HYP2015; http://journals.jps.jp/doi/abs/10.7566/HYP2015
  29. 29.
    M. Dhar, Dissertation JLU Giessen (2016)Google Scholar
  30. 30.
    Y. Fujiwara, M. Kohno, Y. Suzuki, Mod. Phys. Lett. A 24, 1031 (2009). https://doi.org/10.1142/S0217732309000528
  31. 31.
    M. Kohno, Y. Fujiwara, Phys. Rev. C 79, 054318 (2009).  https://doi.org/10.1103/PhysRevC.79.054318
  32. 32.
    E. Epelbaum, H.W. Hammer, U.G. Meissner, Rev. Mod. Phys. 81, 1773 (2009).  https://doi.org/10.1103/RevModPhys.81.1773
  33. 33.
    E. Hiyama, Nucl. Phys. A 914, 130 (2013). https://doi.org/10.1016/j.nuclphysa.2013.05.011
  34. 34.
    J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).  https://doi.org/10.1103/RevModPhys.87.1067
  35. 35.
    D.J. Millener, Nucl. Phys. A 881, 298 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.019
  36. 36.
    D.J. Millener, Nucl. Phys. A 914, 109 (2013). https://doi.org/10.1016/j.nuclphysa.2013.01.023
  37. 37.
    M. Stoitsov, H. Nam, W. Nazarewicz, A. Bulgac, G. Hagen, M. Kortelainen, J.C. Pei, K.J. Roche, N. Schunck, I. Thompson, J.P. Vary, S.M. Wild, UNEDF: advanced scientific computing transforms the low-energy nuclear many-body problem. J. Phys. Conf. Ser. 402, 12033 (2012). https://doi.org/10.1088/1742-6596/402/1/012033
  38. 38.
    H. Nam et al., J. Phys. Conf. Ser. 402, 012033 (2012). https://doi.org/10.1088/1742-6596/402/1/012033
  39. 39.
    S. Bogner et al., Comput. Phys. Commun. 184, 2235 (2013). https://doi.org/10.1016/j.cpc.2013.05.020
  40. 40.
    C.M. Keil, F. Hofmann, H. Lenske, Phys. Rev. C 61, 064309 (2000).  https://doi.org/10.1103/PhysRevC.61.064309
  41. 41.
    H. Lenske, C. Fuchs, Phys. Lett. B 345, 355 (1995). https://doi.org/10.1016/0370-2693(94)01664-X
  42. 42.
    C. Fuchs, H. Lenske, H.H. Wolter, Phys. Rev. C 52, 3043 (1995).  https://doi.org/10.1103/PhysRevC.52.3043
  43. 43.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 034314 (2001).  https://doi.org/10.1103/PhysRevC.64.034314
  44. 44.
    C. Keil, H. Lenske, Phys. Rev. C 66, 054307 (2002).  https://doi.org/10.1103/PhysRevC.66.054307
  45. 45.
    H. Lenske, Lect. Notes Phys. 641, 147 (2004). https://doi.org/10.1007/978-3-540- 39911-7_5.
  46. 46.
    A. Fedoseew, H. Lenske, Phys. Rev. C 91(3), 034307 (2015).  https://doi.org/10.1103/PhysRevC.91.034307
  47. 47.
    S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999). https://doi.org/10.1016/S0375-9474(99)00310-3
  48. 48.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005). https://doi.org/10.1016/j.physrep.2004.10.001
  49. 49.
    H. Liang, J. Meng, S.G. Zhou, Phys. Rep. 570, 1 (2015). https://doi.org/10.1016/j.physrep.2014.12.005
  50. 50.
    T. Nikšić, N. Paar, P.G. Reinhard, D. Vretenar, J. Phys. G 42(3), 034008 (2015). https://doi.org/10.1088/0954-3899/42/3/034008
  51. 51.
    H.J. Schulze, M. Baldo, U. Lombardo, J. Cugnon, A. Lejeune, Phys. Rev. C 57, 704 (1998).  https://doi.org/10.1103/PhysRevC.57.704
  52. 52.
    I. Vidana, A. Polls, A. Ramos, M. Hjorth-Jensen, Nucl. Phys. A 644, 201 (1998). https://doi.org/10.1016/S0375-9474(98)00599-5
  53. 53.
    D.E. Lanskoy, Y. Yamamoto, Phys. Rev. C 55, 2330 (1997).  https://doi.org/10.1103/PhysRevC.55.2330
  54. 54.
    H.J. Schulze, E. Hiyama, Phys. Rev. C 90(4), 047301 (2014).  https://doi.org/10.1103/PhysRevC.90.047301
  55. 55.
    S. Petschauer, J. Haidenbauer, N. Kaiser, U.G. Meissner, W. Weise, Nucl. Phys. A 957, 347 (2017). https://doi.org/10.1016/j.nuclphysa.2016.09.010
  56. 56.
    N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991).  https://doi.org/10.1103/PhysRevLett.67.2414
  57. 57.
    N.K. Glendenning, D. Von-Eiff, M. Haft, H. Lenske, M.K. Weigel, Phys. Rev. C 48, 889 (1993).  https://doi.org/10.1103/PhysRevC.48.889
  58. 58.
    E.N.E. van Dalen, G. Colucci, A. Sedrakian, Phys. Lett. B 734, 383 (2014). https://doi.org/10.1016/j.physletb.2014.06.002
  59. 59.
    A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90(6), 065809 (2014).  https://doi.org/10.1103/PhysRevC.90.065809
  60. 60.
    A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Eur. Phys. J. A 52(2), 40 (2016).  https://doi.org/10.1140/epja/i2016-16040-3
  61. 61.
    A. Drago, G. Pagliara, Eur. Phys. J. A 52(2), 41 (2016).  https://doi.org/10.1140/epja/i2016-16041-2
  62. 62.
    K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, J. Phys. Conf. Ser. 798(1), 012070 (2017). https://doi.org/10.1088/1742-6596/798/1/012070
  63. 63.
    H. Lenske, M. Dhar, N. Tsoneva, J. Wilhelm, EPJ Web Conf. 107, 10001 (2016).  https://doi.org/10.1051/epjconf/201610710001
  64. 64.
    S. Schramm, V. Dexheimer, R. Negreiros, Eur. Phys. J. A 52(1), 14 (2016).  https://doi.org/10.1140/epja/i2016-16014-5
  65. 65.
    C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001
  66. 66.
    J.D. Bjorken, S. Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Company, New York, 1964), 300 pp.Google Scholar
  67. 67.
    J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963) [Erratum: Rev. Mod. Phys. 37, 326 (1965)].  https://doi.org/10.1103/RevModPhys.35.916.
  68. 68.
    R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987). https://doi.org/10.1016/S0370-1573(87)80002-9
  69. 69.
    R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)Google Scholar
  70. 70.
    R. Blankenbecler, R. Sugar, Phys. Rev. 142, 1051 (1966).  https://doi.org/10.1103/PhysRev.142.1051
  71. 71.
    J. Haidenbauer, U.G. Meissner, S. Petschauer, Nucl. Phys. A 954, 273 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.006
  72. 72.
    W. Briscoe et al. (2016). http://gwdac.phys.gwu.edu/
  73. 73.
    K. Miyagawa, H. Kamada, W. Gloeckle, Nucl. Phys. A 614, 535 (1997). https://doi.org/10.1016/S0375-9474(96)00479-4
  74. 74.
    F. de Jong, H. Lenske, Phys. Rev. C 57, 3099 (1998).  https://doi.org/10.1103/PhysRevC.57.3099
  75. 75.
    H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions (Wiley, New York, 1992), 960 pGoogle Scholar
  76. 76.
    J. Haidenbauer, U.G. Meissner, Nucl. Phys. A 881, 44 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.021
  77. 77.
    N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer, New York, 1997)Google Scholar
  78. 78.
    K. Langanke, S.E. Koonin, J.A. Maruhn (eds.), Computational Nuclear Physics. Vol. 2: Nuclear Reactions (Springer, New York, 1993)Google Scholar
  79. 79.
    Y. Lim, C.H. Hyun, K. Kwak, C.H. Lee, Int. J. Mod. Phys. E 24, 1550100 (2015)Google Scholar
  80. 80.
    H.P. Duerr, Phys. Rev. 103, 469 (1956).  https://doi.org/10.1103/PhysRev.103.469
  81. 81.
    J.D. Walecka, Ann. Phys. 83, 491 (1974). https://doi.org/10.1016/0003-4916(74)90208-5
  82. 82.
    J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977). https://doi.org/10.1016/0375-9474(77)90626-1
  83. 83.
    B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997). https://doi.org/10.1142/S0218301397000299
  84. 84.
    K. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Lett. B 748, 369 (2015)Google Scholar
  85. 85.
    A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, C. Ishizuka, S. Yamada, H. Suzuki, Nucl. Phys. A 835, 374 (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.222
  86. 86.
    S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85(6), 065802 (2012) [Erratum: Phys. Rev. C 90(1), 019904 (2014)].  https://doi.org/10.1103/PhysRevC.85.065802;  https://doi.org/10.1103/PhysRevC.90.019904
  87. 87.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 025804 (2001).  https://doi.org/10.1103/PhysRevC.64.025804
  88. 88.
    C.J. Horowitz, B.D. Serot, Phys. Lett. B 137, 287 (1984). https://doi.org/10.1016/0370-2693(84)91717-9
  89. 89.
    C.J. Horowitz, B.D. Serot, Phys. Lett. B 140, 181 (1984). https://doi.org/10.1016/0370-2693(84)90916-X
  90. 90.
    C.J. Horowitz, B.D. Serot, Nucl. Phys. A 464, 613 (1987) [Erratum: Nucl. Phys. A 473, 760 (1987)]. https://doi.org/10.1016/0375-9474(87)90370-8; https://doi.org/10.1016/0375-9474(87)90281-8
  91. 91.
    A. Migdal, Sov. Phys. JETP 7, 996 (1958)Google Scholar
  92. 92.
    A. Fetter, J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  93. 93.
    G. Bertsch, J. Borysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977). https://doi.org/10.1016/0375-9474(77)90392-X
  94. 94.
    F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998).  https://doi.org/10.1103/PhysRevC.57.2281
  95. 95.
    J. Meng, P. Ring, P. Zhao, Int. Rev. Nucl. Phys. 10, 21 (2016). https://doi.org/10.1142/9789814733267_0002
  96. 96.
    P. Ring, Int. Rev. Nucl. Phys. 10, 1 (2016). https://doi.org/10.1142/9789814733267_0001
  97. 97.
    J.W. Negele, Rev. Mod. Phys. 54, 913 (1982).  https://doi.org/10.1103/RevModPhys.54.913
  98. 98.
    H. Lenske, C. Xu, M. Dhar, T. Gaitanos, R. Shyam, in Proceedings of the 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015) (2017).  https://doi.org/10.7566/HYP2015; http://journals.jps.jp/doi/abs/10.7566/HYP2015
  99. 99.
    H. Hotchi et al., Phys. Rev. C 64, 044302 (2001).  https://doi.org/10.1103/PhysRevC.64.044302
  100. 100.
    M. May et al., Phys. Rev. Lett. 78, 4343 (1997).  https://doi.org/10.1103/PhysRevLett.78.4343
  101. 101.
    T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996).  https://doi.org/10.1103/PhysRevC.53.1210
  102. 102.
    S. Ajimura et al., Nucl. Phys. A 585, 173C (1995). https://doi.org/10.1016/0375-9474(94)00562-2
  103. 103.
    P.H. Pile et al., Phys. Rev. Lett. 66, 2585 (1991).  https://doi.org/10.1103/PhysRevLett.66.2585
  104. 104.
    J. Mares, B.K. Jennings, Phys. Rev. C 49, 2472 (1994).  https://doi.org/10.1103/PhysRevC.49.2472
  105. 105.
    M. Danysz et al., Phys. Rev. Lett. 11, 29 (1963).  https://doi.org/10.1103/PhysRevLett.11.29
  106. 106.
    H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).  https://doi.org/10.1103/PhysRevLett.87.212502
  107. 107.
    J.K. Ahn et al., Phys. Rev. C 88(1), 014003 (2013).  https://doi.org/10.1103/PhysRevC.88.014003
  108. 108.
    Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog. Part. Nucl. Phys. 58, 439 (2007). https://doi.org/10.1016/j.ppnp.2006.08.001
  109. 109.
    I.N. Filikhin, A. Gal, Phys. Rev. C 65, 041001 (2002).  https://doi.org/10.1103/PhysRevC.65.041001
  110. 110.
    I.R. Afnan, B.F. Gibson, Phys. Rev. C 67, 017001 (2003).  https://doi.org/10.1103/PhysRevC.67.017001
  111. 111.
    I. Vidana, A. Ramos, A. Polls, Phys. Rev. C 70, 024306 (2004).  https://doi.org/10.1103/PhysRevC.70.024306
  112. 112.
    T. Yamada, Phys. Rev. C 69, 044301 (2004).  https://doi.org/10.1103/PhysRevC.69.044301
  113. 113.
    Q.N. Usmani, A.R. Bodmer, B. Sharma, Phys. Rev. C 70, 061001 (2004).  https://doi.org/10.1103/PhysRevC.70.061001
  114. 114.
    L. Adamczyk et al., Phys. Rev. Lett. 114(2), 022301 (2015).  https://doi.org/10.1103/PhysRevLett.114.022301
  115. 115.
    K. Morita, T. Furumoto, A. Ohnishi, Phys. Rev. C 91(2), 024916 (2015).  https://doi.org/10.1103/PhysRevC.91.024916
  116. 116.
    P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 831, 163 (2009). https://doi.org/10.1016/j.nuclphysa.2009.10.083
  117. 117.
    S. Petschauer, N. Kaiser, J. Haidenbauer, U.G. Meissner, W. Weise, Phys. Rev. C 93(1), 014001 (2016).  https://doi.org/10.1103/PhysRevC.93.014001
  118. 118.
    S. Petschauer, J. Haidenbauer, N. Kaiser, U.G. Meissner, W. Weise, Eur. Phys. J. A 52(1), 15 (2016).  https://doi.org/10.1140/epja/i2016-16015-4
  119. 119.
    R. Wirth, R. Roth, Phys. Rev. Lett. 117, 182501 (2016).  https://doi.org/10.1103/PhysRevLett.117.182501
  120. 120.
    T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, K. Sasaki, Prog. Theor. Phys. 124, 591 (2010).  https://doi.org/10.1143/PTP.124.591
  121. 121.
    T. Doi et al., PoS LATTICE2016, 110 (2017)Google Scholar
  122. 122.
    H. Nemura et al., PoS LATTICE2016, 101 (2017)Google Scholar
  123. 123.
    N. Ishii et al., PoS LATTICE2016, 127 (2017)Google Scholar
  124. 124.
    S.R. Beane, M.J. Savage, Phys. Lett. B 535, 177 (2002). https://doi.org/10.1016/S0370-2693(02)01762-8
  125. 125.
    S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011). https://doi.org/10.1016/j.ppnp.2010.08.002
  126. 126.
    S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Walker-Loud, Phys. Rev. Lett. 109, 172001 (2012).  https://doi.org/10.1103/PhysRevLett.109.172001
  127. 127.
    K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Phys. Rev. D 92(11), 114512 (2015).  https://doi.org/10.1103/PhysRevD.92.114512
  128. 128.
    R.H. Dalitz, F. Von Hippel, Phys. Lett. 10, 153 (1964). https://doi.org/10.1016/0031-9163(64)90617-1
  129. 129.
    Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012).  https://doi.org/10.1103/RevModPhys.84.449
  130. 130.
    H. Sanchis-Alepuz, C.S. Fischer, Phys. Rev. D 90(9), 096001 (2014).  https://doi.org/10.1103/PhysRevD.90.096001
  131. 131.
    F. Aceti, E. Oset, Phys. Rev. D 86, 014012 (2012).  https://doi.org/10.1103/PhysRevD.86.014012
  132. 132.
    F. Aceti, L.R. Dai, L.S. Geng, E. Oset, Y. Zhang, Eur. Phys. J. A 50, 57 (2014).  https://doi.org/10.1140/epja/i2014-14057-2
  133. 133.
    W.C. Chang, J.C. Peng, Phys. Rev. Lett. 106, 252002 (2011).  https://doi.org/10.1103/PhysRevLett.106.252002
  134. 134.
    W.C. Chang, J.C. Peng, Phys. Lett. B 704, 197 (2011). https://doi.org/10.1016/j.physletb.2011.08.077
  135. 135.
    S. Sarkar, E. Oset, M.J. Vicente Vacas, Nucl. Phys. A 750, 294 (2005) [Erratum: Nucl. Phys. A 780, 90 (2006)]. https://doi.org/10.1016/j.nuclphysa.2005.01.006; https://doi.org/10.1016/j.nuclphysa.2006.09.019
  136. 136.
    S. Sarkar, B.X. Sun, E. Oset, M.J. Vicente Vacas, Eur. Phys. J. A 44, 431 (2010).  https://doi.org/10.1140/epja/i2010-10956-4
  137. 137.
    Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A 954, 41 (2016). https://doi.org/10.1016/j.nuclphysa.2016.04.013
  138. 138.
    F. Aceti, E. Oset, L. Roca, Phys. Rev. C 90(2), 025208 (2014).  https://doi.org/10.1103/PhysRevC.90.025208
  139. 139.
    C.W. Xiao, F. Aceti, M. Bayar, Eur. Phys. J. A 49, 22 (2013).  https://doi.org/10.1140/epja/i2013-13022-y
  140. 140.
    Q.B. Li, P.N. Shen, A. Faessler, Phys. Rev. C 65, 045206 (2002).  https://doi.org/10.1103/PhysRevC.65.045206
  141. 141.
    R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) [Erratum: Phys. Rev. Lett. 38, 617 (1977)].  https://doi.org/10.1103/PhysRevLett.38.195
  142. 142.
    G.F. Bertsch, B.A. Li, G.E. Brown, V. Koch, Nucl. Phys. A 490, 745 (1988). https://doi.org/10.1016/0375-9474(88)90024-3
  143. 143.
    J. Helgesson, J. Randrup, Ann. Phys. 244, 12 (1995).  https://doi.org/10.1006/aphy.1995.1106
  144. 144.
    A.B. Larionov, U. Mosel, Nucl. Phys. A 728, 135 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.005
  145. 145.
    V. Shklyar, H. Lenske, Phys. Rev. C 80, 058201 (2009).  https://doi.org/10.1103/PhysRevC.80.058201
  146. 146.
    M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 80, 065501 (2009).  https://doi.org/10.1103/PhysRevC.80.065501
  147. 147.
    M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 81, 045502 (2010).  https://doi.org/10.1103/PhysRevC.81.045502
  148. 148.
    J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, Phys. Rev. C 83, 045501 (2011).  https://doi.org/10.1103/PhysRevC.83.045501
  149. 149.
    F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).  https://doi.org/10.1103/RevModPhys.64.491
  150. 150.
    T. Udagawa, P. Oltmanns, F. Osterfeld, S.W. Hong, Phys. Rev. C 49, 3162 (1994).  https://doi.org/10.1103/PhysRevC.49.3162
  151. 151.
    I. Vidana, J. Benlliure, H. Geissel, H. Lenske, C. Scheidenberger, J. Vargas, EPJ Web Conf. 107, 10003 (2016).  https://doi.org/10.1051/epjconf/201610710003
  152. 152.
    J. Benlliure et al., Nuovo Cim. C 39(6), 401 (2016).  https://doi.org/10.1393/ncc/i2016-16401-0
  153. 153.
    T.E.O. Ericson, W. Weise, Pions and Nuclei, vol. 74 (Clarendon Press, Oxford, 1988). http://www-spires.fnal.gov/spires/find/books/www?cl=QC793.5.M42E75::1988
  154. 154.
    V. Dmitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A 459, 503 (1986). https://doi.org/10.1016/0375-9474(86)90158-2
  155. 155.
    G.E. Brown, W. Weise, Phys. Rep. 22, 279 (1975). https://doi.org/10.1016/0370-1573(75)90026-5
  156. 156.
    E. Oset, H. Toki, W. Weise, Phys. Rep. 83, 281 (1982). https://doi.org/10.1016/0370-1573(82)90123-5
  157. 157.
  158. 158.
    A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192, 179 (1990). https://doi.org/10.1016/0370-1573(90)90132-L
  159. 159.
    E. Oset, M. Rho, Phys. Rev. Lett. 42, 47 (1979).  https://doi.org/10.1103/PhysRevLett.42.47
  160. 160.
    E. Oset, W. Weise, Nucl. Phys. A 319, 477 (1979). https://doi.org/10.1016/0375-9474(79)90527-X
  161. 161.
    C. Garcia-Recio, E. Oset, L.L. Salcedo, D. Strottman, M.J. Lopez, Nucl. Phys. A 526, 685 (1991). https://doi.org/10.1016/0375-9474(91)90438-C
  162. 162.
    K. Wehrberger, R. Wittman, Nucl. Phys. A 513, 603 (1990). https://doi.org/10.1016/0375-9474(90)90400-G
  163. 163.
    E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631 (1987). https://doi.org/10.1016/0375-9474(87)90185-0
  164. 164.
    A. Fedoseew, JLU Giessen (2017)Google Scholar
  165. 165.
    R.M. Sealock et al., Phys. Rev. Lett. 62, 1350 (1989).  https://doi.org/10.1103/PhysRevLett.62.1350 CrossRefADSGoogle Scholar
  166. 166.
    P. Barreau et al., Nucl. Phys. A 402, 515 (1983). https://doi.org/10.1016/0375-9474(83)90217-8 CrossRefADSGoogle Scholar
  167. 167.
    J.S. O’Connell et al., Phys. Rev. Lett. 53, 1627 (1984).  https://doi.org/10.1103/PhysRevLett.53.1627 CrossRefADSGoogle Scholar
  168. 168.
    P.K.A. de Witt Huberts, J. Phys. G 16, 507 (1990). https://doi.org/10.1088/0954-3899/16/4/004 CrossRefADSGoogle Scholar
  169. 169.
    T. De Forest Jr., J.D. Walecka, Adv. Phys. 15, 1 (1966). https://doi.org/10.1080/00018736600101254 CrossRefADSGoogle Scholar
  170. 170.
    O. Benhar, D. day, I. Sick, Rev. Mod. Phys. 80, 189 (2008).  https://doi.org/10.1103/RevModPhys.80.189
  171. 171.
    L.h. Xia, P.J. Siemens, M. Soyeur, Nucl. Phys. A 578, 493 (1994). https://doi.org/10.1016/0375-9474(94)90757-9
  172. 172.
    J. Piekarewicz, Int. J. Mod. Phys. E 24(09), 1541003 (2015). https://doi.org/10.1142/S0218301315410037 CrossRefADSGoogle Scholar
  173. 173.
    R.M. Edelstein, E.J. Makuchowski, C.M. Meltzer, E.L. Miller, J.S. Russ, B. Gobbi, J.L. Rosen, H.A. Scott, S.L. Shapiro, L. Strawczynski, Phys. Rev. Lett. 38, 185 (1977).  https://doi.org/10.1103/PhysRevLett.38.185 CrossRefADSGoogle Scholar
  174. 174.
    C.G. Cassapakis et al., Phys. Lett. B 63, 35 (1976). https://doi.org/10.1016/0370-2693(76)90462-7 CrossRefADSGoogle Scholar
  175. 175.
    D.A. Lind, Can. J. Phys. 65, 637 (1987). https://doi.org/10.1139/p87-090 CrossRefADSGoogle Scholar
  176. 176.
    B.E. Bonner, J.E. Simmons, C.R. Newsom, P.J. Riley, G. Glass, J.C. Hiebert, M. Jain, L.C. Northcliffe, Phys. Rev. C 18, 1418 (1978).  https://doi.org/10.1103/PhysRevC.18.1418 CrossRefADSGoogle Scholar
  177. 177.
    B.E. Bonner, J.E. Simmons, C.L. Hollas, C.R. Newsom, P.J. Riley, G. Glass, M. Jain, Phys. Rev. Lett. 41, 1200 (1978).  https://doi.org/10.1103/PhysRevLett.41.1200 CrossRefADSGoogle Scholar
  178. 178.
    T. Hennino et al., Phys. Rev. Lett. 48, 997 (1982).  https://doi.org/10.1103/PhysRevLett.48.997 CrossRefADSGoogle Scholar
  179. 179.
    D. Contardo et al., Phys. Lett. B 168, 331 (1986). https://doi.org/10.1016/0370-2693(86)91639-4 CrossRefADSGoogle Scholar
  180. 180.
    D. Bachelier et al., Phys. Lett. B 172, 23 (1986). https://doi.org/10.1016/0370-2693(86)90209-1 CrossRefADSGoogle Scholar
  181. 181.
    D. Krpic, J. Puzovic, S. Drndarevic, R. Maneska, S. Backovic, J. Bogdanowicz, A.P. Cheplakov, S.Y. Sivoklokov, V.G. Grishin, Phys. Rev. C 46, 2501 (1992).  https://doi.org/10.1103/PhysRevC.46.2501 CrossRefADSGoogle Scholar
  182. 182.
    D. Krpic, G. Skoro, I. Picuric, S. Backovic, S. Drndarevic, Phys. Rev. C 65, 034909 (2002).  https://doi.org/10.1103/PhysRevC.65.034909 CrossRefADSGoogle Scholar
  183. 183.
    T. Hennino et al., Phys. Lett. B 283, 42 (1992). https://doi.org/10.1016/0370-2693(92)91423-7 CrossRefADSGoogle Scholar
  184. 184.
    T. Hennino et al., Phys. Lett. B 303, 236 (1993). https://doi.org/10.1016/0370-2693(93)91426-N CrossRefADSGoogle Scholar
  185. 185.
    J. Chiba et al., Phys. Rev. Lett. 67, 1982 (1991).  https://doi.org/10.1103/PhysRevLett.67.1982 CrossRefADSGoogle Scholar
  186. 186.
  187. 187.
    K.K. Olimov, S.L. Lutpullaev, K. Olimov, K.G. Gulamov, J.K. Olimov, Phys. Rev. C 75, 067901 (2007).  https://doi.org/10.1103/PhysRevC.75.067901 CrossRefADSGoogle Scholar
  188. 188.
    K.K. Olimov, Phys. Atom. Nucl. 71, 93 (2008) [Yad. Fiz. 71, 94 (2008)]. https://doi.org/10.1007/s11450-008-1010-2.
  189. 189.
    L. Simic, M.V. Milosavljevic, I. Mendas, D. Krpic, D.S. Popovic, Phys. Rev. C 80, 017901 (2009).  https://doi.org/10.1103/PhysRevC.80.017901 CrossRefADSGoogle Scholar
  190. 190.
    K.K. Olimov, M.Q. Haseeb, I. Khan, A.K. Olimov, V.V. Glagolev, Phys. Rev. C 85, 014907 (2012).  https://doi.org/10.1103/PhysRevC.85.014907 CrossRefADSGoogle Scholar
  191. 191.
    D. Krpic, S. Drndarevic, J. Ilic, G. Skoro, I. Picuric, S. Backovic, Eur. Phys. J. A 20, 351 (2004).  https://doi.org/10.1140/epja/i2003-10175-2 CrossRefADSGoogle Scholar
  192. 192.
    V. Metag, Prog. Part. Nucl. Phys. 30, 75 (1993). https://doi.org/10.1016/0146-6410(93)90007-3 CrossRefADSGoogle Scholar
  193. 193.
  194. 194.
    T. Udagawa, S.W. Hong, F. Osterfeld, Phys. Lett. B 245, 1 (1990). https://doi.org/10.1016/0370-2693(90)90154-X.CrossRefADSGoogle Scholar
  195. 195.
    B. Koerfgen, F. Osterfeld, T. Udagawa, Phys. Rev. C 50, 1637 (1994).  https://doi.org/10.1103/PhysRevC.50.1637 CrossRefADSGoogle Scholar
  196. 196.
    M. Trzaska et al., Z. Phys. A 340, 325 (1991). https://doi.org/10.1007/BF01294681 CrossRefADSGoogle Scholar
  197. 197.
    E. Oset, L.L. Salcedo, D. Strottman, Phys. Lett. B 165, 13 (1985). https://doi.org/10.1016/0370-2693(85)90681-1 CrossRefADSGoogle Scholar
  198. 198.
  199. 199.
    W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188, 363 (1990). https://doi.org/10.1016/0370-1573(90)90164-W CrossRefADSGoogle Scholar
  200. 200.
    H. Stoecker, W. Greiner, Phys. Rep. 137, 277 (1986). https://doi.org/10.1016/0370-1573(86)90131-6 CrossRefADSGoogle Scholar
  201. 201.
    U. Mosel, Ann. Rev. Nucl. Part. Sci. 41, 29 (1991).  https://doi.org/10.1146/annurev.ns.41.120191.000333 CrossRefADSGoogle Scholar
  202. 202.
    M. Eskef et al., Eur. Phys. J. A 3, 335 (1998). https://doi.org/10.1007/s100500050188 CrossRefADSGoogle Scholar
  203. 203.
    E.L. Hjort et al., Phys. Rev. Lett. 79, 4345 (1997).  https://doi.org/10.1103/PhysRevLett.79.4345 CrossRefADSGoogle Scholar
  204. 204.
    G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991).  https://doi.org/10.1103/PhysRevLett.66.2720 CrossRefADSGoogle Scholar
  205. 205.
  206. 206.
    E.V. Shuryak, G.E. Brown, Nucl. Phys. A 717, 322 (2003). https://doi.org/10.1016/S0375-9474(03)00672-9 CrossRefADSGoogle Scholar
  207. 207.
    G. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)CrossRefADSGoogle Scholar
  208. 208.
    W. Ehehalt, W. Cassing, A. Engel, U. Mosel, G. Wolf, Phys. Rev. C 47, R2467 (1993).  https://doi.org/10.1103/PhysRevC.47.R2467 CrossRefADSGoogle Scholar
  209. 209.
    S.A. Bass, C. Hartnack, H. Stoecker, W. Greiner, Phys. Rev. C 51, 3343 (1995).  https://doi.org/10.1103/PhysRevC.51.3343 CrossRefADSGoogle Scholar
  210. 210.
    S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, G. Wolf, Z. Phys. A 356, 421 (1997). https://doi.org/10.1007/BF02769248,10.1007/s002180050198 Google Scholar
  211. 211.
    S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, G. Wolf, Z. Phys. A 359, 297 (1997). https://doi.org/10.1007/s002180050405 Google Scholar
  212. 212.
    J. Helgesson, J. Randrup, Phys. Lett. B 411, 1 (1997). https://doi.org/10.1016/S0370-2693(97)00965-9 CrossRefADSGoogle Scholar
  213. 213.
    J. Helgesson, J. Randrup, Phys. Lett. B 439, 243 (1998). https://doi.org/10.1016/S0370-2693(98)01109-5 CrossRefADSGoogle Scholar
  214. 214.
    H. Weber, E.L. Bratkovskaya, W. Cassing, H. Stoecker, Phys. Rev. C 67, 014904 (2003).  https://doi.org/10.1103/PhysRevC.67.014904 CrossRefADSGoogle Scholar
  215. 215.
    D. Pelte et al., Z. Phys. A 357, 215 (1997). https://doi.org/10.1007/s002180050236 CrossRefADSGoogle Scholar
  216. 216.
    A.B. Larionov, W. Cassing, S. Leupold, U. Mosel, Nucl. Phys. A 696, 747 (2001). https://doi.org/10.1016/S0375-9474(01)01216-7 CrossRefADSGoogle Scholar
  217. 217.
    J. Helgesson, J. Randrup, Ann. Phys. 274, 1 (1999).  https://doi.org/10.1006/aphy.1999.5906 CrossRefADSGoogle Scholar
  218. 218.
    P.A. Henning, H. Umezawa, Nucl. Phys. A 571, 617 (1994). https://doi.org/10.1016/0375-9474(94)90713-7 CrossRefADSGoogle Scholar
  219. 219.
    C.L. Korpa, R. Malfliet, Phys. Rev. C 52, 2756 (1995).  https://doi.org/10.1103/PhysRevC.52.2756 CrossRefADSGoogle Scholar
  220. 220.
    M. Hirata, J.H. Koch, E.J. Moniz, F. Lenz, Ann. Phys. 120, 205 (1979). https://doi.org/10.1016/0003-4916(79)90287-2 CrossRefADSGoogle Scholar
  221. 221.
    O. Buss, L. Alvarez-Ruso, A.B. Larionov, U. Mosel, Phys. Rev. C 74, 044610 (2006).  https://doi.org/10.1103/PhysRevC.74.044610 CrossRefADSGoogle Scholar
  222. 222.
    S.A. Wood, J.L. Matthews, E.R. Kinney, P.A.M. Gram, G.A. Rebka, D.A. Roberts, Phys. Rev. C 46, 1903 (1992).  https://doi.org/10.1103/PhysRevC.46.1903 CrossRefADSGoogle Scholar
  223. 223.
    J. Vargas, J. Benlliure, M. Caamano, Nucl. Instrum. Methods A 707, 16 (2013). https://doi.org/10.1016/j.nima.2012.12.087 CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikJLU GiessenGießenGermany
  2. 2.Balurghat CollegeBalurghatIndia

Personalised recommendations