Skip to main content

Giant Resonances: Fundamental Modes and Probes of Nuclear Properties

  • Chapter
  • First Online:
The Euroschool on Exotic Beams - Vol. 5

Part of the book series: Lecture Notes in Physics ((LNP,volume 948))

  • 701 Accesses

Abstract

To study the properties of nuclear matter, we use nuclear reactions to excite the fundamental modes of the nucleus, which can yield information on the equation of state (EOS) and are also important for understanding nuclear structure aspects of nuclei. Furthermore, it is very important to understand the nuclear processes that precede a supernova event and to understand the properties of nuclear matter in order to explain why stars sometimes explode throwing most of the star material into space leaving a neutron star or a black hole behind.

In the last three decades, the compression modes, the isoscalar giant monopole (ISGMR) and dipole resonances (ISGDR), were extensively studied because of their importance for the determination of the nuclear-matter incompressibility and consequently their implications for the EOS of nuclear matter. Though the nuclear matter incompressibility (K) has been reasonably well determined (~240 ± 10 MeV) through comparison of experimental results on several spherical nuclei with microscopic calculations, the asymmetry term was determined with much larger uncertainty. This has been addressed in measurements on a series of stable Sn and Cd isotopes, which resulted in a value of K τ  = −550 ± 100 MeV for the asymmetry term in the nuclear incompressibility.

Spin-isospin modes, and in particular the Gamow–Teller (GT) transitions, aside from their interest from the nuclear structure point of view, play very important roles in various phenomena in nature. In nucleosynthesis, the β-decay of nuclei along the s- and r-processes determine the paths that these processes follow and the abundances of the elements synthesised. In supernova explosions, GT transitions are of paramount importance in the pre-supernova phase where electron capture occurs on neutron-rich fp-shell nuclei at the high temperatures of giant stars. Electron capture is mediated by GT transitions. Electron capture removes the electron pressure that keeps the star from collapsing precipitating an implosion followed by a cataclysmic explosion throwing much of the star material into space and leaving a neutron star or black hole behind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Bothe, W. Gentner, Z. Phys. 71, 236 (1937)

    Article  ADS  Google Scholar 

  2. A.B. Migdal, J. Phys. (USSR) 8, 331 (1944)

    Google Scholar 

  3. G.C. Baldwin, G.S. Klaiber, Phys. Rev. 71, 3 (1947)

    Article  ADS  Google Scholar 

  4. M. Goldhaber, E. Teller, Phys. Rev. 74, 1046 (1948)

    Article  ADS  Google Scholar 

  5. H. Steinwedel, J.H.D. Jensen, Phys. Rev. 79, 1019 (1950)

    ADS  Google Scholar 

  6. M.N. Harakeh, A. van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitations. (Oxford University Press, New York, 2001), and references therein

    Google Scholar 

  7. R. Pitthan, T. Walcher, Phys. Lett. B 36, 563 (1971)

    Article  ADS  Google Scholar 

  8. M.N. Harakeh et al., Phys. Rev. Lett. 38, 676 (1977)

    Article  ADS  Google Scholar 

  9. D.H. Youngblood et al., Phys. Rev. Lett. 39, 1188 (1977)

    Article  ADS  Google Scholar 

  10. M.N. Harakeh et al., Nucl. Phys. A 327, 373 (1979)

    Article  ADS  Google Scholar 

  11. J.P. Blaizot, Phys. Rep. 64, 171 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Stringari, Phys. Lett. B 108, 232 (1982)

    Article  ADS  Google Scholar 

  13. R.C. Nayak et al., Nucl. Phys. A 516, 62 (1990), and references therein

    Google Scholar 

  14. M. Uchida et al., Phys. Rev. C 69, 051301 (2004)

    Article  ADS  Google Scholar 

  15. G. Colò et al., Phys. Rev. C 70, 024307 (2004)

    Article  ADS  Google Scholar 

  16. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)

    Article  ADS  Google Scholar 

  17. T. Li et al., Phys. Rev. C 81, 034309 (2010)

    Article  ADS  Google Scholar 

  18. S.K. Patra et al., Phys. Rev. C 65, 044304 (2002)

    Article  ADS  Google Scholar 

  19. H. Sagawa et al., Phys. Rev. C 76, 034327 (2007)

    Article  ADS  Google Scholar 

  20. F. Petrovich, W.G. Love, Nucl. Phys. A 354, 499 (1981)

    Article  ADS  Google Scholar 

  21. C. Gaarde, in Proc. Niels Bohr Centennial Conf., Copenhagen, eds. by R. Broglia, G. Hageman, B. Herskind (North-Holland, Amsterdam, 1985)

    Google Scholar 

  22. J. Rapaport, E. Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994), and references therein

    Google Scholar 

  23. H.A. Bethe et al., Nucl. Phys. A 324, 487 (1979)

    Article  ADS  Google Scholar 

  24. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980)

    Article  ADS  Google Scholar 

  25. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 48, 279 (1982)

    Article  ADS  Google Scholar 

  26. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 252, 715 (1982)

    Article  ADS  Google Scholar 

  27. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 293, 1 (1985)

    Article  ADS  Google Scholar 

  28. T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)

    Article  ADS  Google Scholar 

  29. I. Bergqvist et al., Nucl. Phys. A 469, 648 (1987)

    Article  ADS  Google Scholar 

  30. M. Fujiwara et al., Phys. Rev. Lett. 85, 4442 (2000)

    Article  ADS  Google Scholar 

  31. T.A. Kirsten, Nucl. Phys. B 77, 26 (1999)

    Article  Google Scholar 

  32. V.N. Gavrin, Nucl. Phys. B 77, 20 (1999)

    Article  Google Scholar 

  33. J.N. Bahcall, Nucl. Phys. B 77, 64 (1999)

    Article  Google Scholar 

  34. M. Bhattacharya et al., Phys. Rev. Lett. 85, 4446 (2000)

    Article  ADS  Google Scholar 

  35. M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. A 422, 484 (1999)

    Article  ADS  Google Scholar 

  36. T. Wakasa et al., Nucl. Instrum. Methods Phys. Res. A 482, 79 (2002)

    Article  ADS  Google Scholar 

  37. Y. Fujita et al., Phys. Lett. B 365, 29 (1996)

    Article  ADS  Google Scholar 

  38. Y. Fujita et al., Eur. Phys. J. A 13, 411 (2002)

    ADS  Google Scholar 

  39. W. Mettner et al., Nucl. Phys. A 473, 160 (1987)

    Article  ADS  Google Scholar 

  40. F. Ajzenberg-Selove et al., Phys. Rev. C 30, 1850 (1984)

    Article  ADS  Google Scholar 

  41. F. Ajzenberg-Selove et al., Phys. Rev. C 31, 777 (1985)

    Article  ADS  Google Scholar 

  42. S. El-Kateb et al., Phys. Rev. C 49, 3128 (1994)

    Article  ADS  Google Scholar 

  43. Y. Fujita et al., Phys. Rev. C 67, 064312 (2003)

    Article  ADS  Google Scholar 

  44. Y. Fujita et al., Phys. Rev. Lett. 92, 062502 (2004)

    Article  ADS  Google Scholar 

  45. Y. Fujita, Nucl. Phys. A 805, 408 (2008), and reference therein

    Google Scholar 

  46. E. Caurier et al., Nucl. Phys. A 653, 439 (1999), and reference therein

    Google Scholar 

  47. K. Langanke, G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000)

    Article  ADS  Google Scholar 

  48. K. Langanke, G. Martínez-Pinedo, At. Data Nucl. Data Tables 79, 1 (2001)

    Article  ADS  Google Scholar 

  49. K. Langanke, G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819 (2003)

    Article  ADS  Google Scholar 

  50. A. Poves et al., Nucl. Phys. A 694, 157 (2001)

    Article  ADS  Google Scholar 

  51. A. Heger et al., Phys. Rev. Lett. 86, 1678 (2001)

    Article  ADS  Google Scholar 

  52. A. Heger et al., Astrophys. J. 560, 307 (2001)

    Article  ADS  Google Scholar 

  53. W.P. Alford et al., Nucl. Phys. A 514, 49 (1990)

    Article  ADS  Google Scholar 

  54. M.C. Vetterli et al., Phys. Rev. C 40, 559 (1989)

    Article  ADS  Google Scholar 

  55. W.P. Alford et al., Phys. Rev. C 48, 2818 (1993)

    Article  ADS  Google Scholar 

  56. A.L. Williams et al., Phys. Rev. C 51, 1144 (1995)

    Article  ADS  Google Scholar 

  57. M. Hagemann et al., Phys. Lett. B 579, 251 (2004)

    Article  ADS  Google Scholar 

  58. M. Hagemann et al., Phys. Rev. C 71, 014606 (2005)

    Article  ADS  Google Scholar 

  59. A.M. van den Berg, Nucl. Instrum. Methods. Phys. Res. B 99, 637 (1995)

    Article  ADS  Google Scholar 

  60. S. Rakers et al., Nucl. Instrum. Methods. Phys. Res. A 481, 253 (2002)

    Article  ADS  Google Scholar 

  61. M. Hagemann et al., Nucl. Instrum. Methods. Phys. Res. A 437, 459 (1999)

    Article  ADS  Google Scholar 

  62. V.M. Hannen et al., Nucl. Instrum. Methods Phys. Res. A 500, 68 (2003)

    Article  ADS  Google Scholar 

  63. S. Rakers et al., Phys. Rev. C 65, 044323 (2002)

    Article  ADS  Google Scholar 

  64. B.D. Anderson et al., Phys. Rev. C 43, 50 (1991)

    Article  ADS  Google Scholar 

  65. M. Honma et al., Phys. Rev. C 69, 034335 (2004)

    Article  ADS  Google Scholar 

  66. C. Bäumer et al., Phys. Rev. C 68, 031303 (2003)

    Article  ADS  Google Scholar 

  67. C. Bäumer et al., Phys. Rev. C 71, 024603 (2005)

    Article  ADS  Google Scholar 

  68. L. Popescu et al., Phys. Rev. C 75, 054312 (2007)

    Article  ADS  Google Scholar 

  69. D. Frekers, Prog. Part. Nucl. Phys. 57, 217 (2006)

    Article  ADS  Google Scholar 

  70. D. Patel et al., Phys. Lett. B 718, 447 (2012)

    Article  ADS  Google Scholar 

  71. A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)

    Article  ADS  Google Scholar 

  72. P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)

    Article  ADS  Google Scholar 

  73. C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)

    Article  ADS  Google Scholar 

  74. M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)

    Article  ADS  Google Scholar 

  75. M. Vandebrouck et al., Phys. Rev. C 92, 024316 (2015)

    Article  ADS  Google Scholar 

  76. S. Bagchi et al., Phys. Lett. B 751, 371 (2015)

    Article  ADS  Google Scholar 

  77. C.E. Demonchy et al., Nucl. Instr. Methods Phys. Res. A 583, 341 (2007)

    Article  ADS  Google Scholar 

  78. C.E. Demonchy, Nucl. Instr. Methods Phys. Res. A 573, 145 (2007)

    Article  ADS  Google Scholar 

  79. J.C. Zamora et al., Phys. Lett. B 763, 16 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Harakeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harakeh, M.N. (2018). Giant Resonances: Fundamental Modes and Probes of Nuclear Properties. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams - Vol. 5. Lecture Notes in Physics, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-319-74878-8_2

Download citation

Publish with us

Policies and ethics