Advertisement

Giant Resonances: Fundamental Modes and Probes of Nuclear Properties

  • M. N. Harakeh
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 948)

Abstract

To study the properties of nuclear matter, we use nuclear reactions to excite the fundamental modes of the nucleus, which can yield information on the equation of state (EOS) and are also important for understanding nuclear structure aspects of nuclei. Furthermore, it is very important to understand the nuclear processes that precede a supernova event and to understand the properties of nuclear matter in order to explain why stars sometimes explode throwing most of the star material into space leaving a neutron star or a black hole behind.

In the last three decades, the compression modes, the isoscalar giant monopole (ISGMR) and dipole resonances (ISGDR), were extensively studied because of their importance for the determination of the nuclear-matter incompressibility and consequently their implications for the EOS of nuclear matter. Though the nuclear matter incompressibility (K) has been reasonably well determined (~240 ± 10 MeV) through comparison of experimental results on several spherical nuclei with microscopic calculations, the asymmetry term was determined with much larger uncertainty. This has been addressed in measurements on a series of stable Sn and Cd isotopes, which resulted in a value of K τ  = −550 ± 100 MeV for the asymmetry term in the nuclear incompressibility.

Spin-isospin modes, and in particular the Gamow–Teller (GT) transitions, aside from their interest from the nuclear structure point of view, play very important roles in various phenomena in nature. In nucleosynthesis, the β-decay of nuclei along the s- and r-processes determine the paths that these processes follow and the abundances of the elements synthesised. In supernova explosions, GT transitions are of paramount importance in the pre-supernova phase where electron capture occurs on neutron-rich fp-shell nuclei at the high temperatures of giant stars. Electron capture is mediated by GT transitions. Electron capture removes the electron pressure that keeps the star from collapsing precipitating an implosion followed by a cataclysmic explosion throwing much of the star material into space and leaving a neutron star or black hole behind.

References

  1. 1.
    W. Bothe, W. Gentner, Z. Phys. 71, 236 (1937)CrossRefADSGoogle Scholar
  2. 2.
    A.B. Migdal, J. Phys. (USSR) 8, 331 (1944)Google Scholar
  3. 3.
    G.C. Baldwin, G.S. Klaiber, Phys. Rev. 71, 3 (1947)CrossRefADSGoogle Scholar
  4. 4.
    M. Goldhaber, E. Teller, Phys. Rev. 74, 1046 (1948)CrossRefADSGoogle Scholar
  5. 5.
    H. Steinwedel, J.H.D. Jensen, Phys. Rev. 79, 1019 (1950)ADSGoogle Scholar
  6. 6.
    M.N. Harakeh, A. van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitations. (Oxford University Press, New York, 2001), and references thereinGoogle Scholar
  7. 7.
    R. Pitthan, T. Walcher, Phys. Lett. B 36, 563 (1971)CrossRefADSGoogle Scholar
  8. 8.
    M.N. Harakeh et al., Phys. Rev. Lett. 38, 676 (1977)CrossRefADSGoogle Scholar
  9. 9.
    D.H. Youngblood et al., Phys. Rev. Lett. 39, 1188 (1977)CrossRefADSGoogle Scholar
  10. 10.
    M.N. Harakeh et al., Nucl. Phys. A 327, 373 (1979)CrossRefADSGoogle Scholar
  11. 11.
    J.P. Blaizot, Phys. Rep. 64, 171 (1980)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    S. Stringari, Phys. Lett. B 108, 232 (1982)CrossRefADSGoogle Scholar
  13. 13.
    R.C. Nayak et al., Nucl. Phys. A 516, 62 (1990), and references thereinGoogle Scholar
  14. 14.
    M. Uchida et al., Phys. Rev. C 69, 051301 (2004)CrossRefADSGoogle Scholar
  15. 15.
    G. Colò et al., Phys. Rev. C 70, 024307 (2004)CrossRefADSGoogle Scholar
  16. 16.
    T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)CrossRefADSGoogle Scholar
  17. 17.
    T. Li et al., Phys. Rev. C 81, 034309 (2010)CrossRefADSGoogle Scholar
  18. 18.
    S.K. Patra et al., Phys. Rev. C 65, 044304 (2002)CrossRefADSGoogle Scholar
  19. 19.
    H. Sagawa et al., Phys. Rev. C 76, 034327 (2007)CrossRefADSGoogle Scholar
  20. 20.
    F. Petrovich, W.G. Love, Nucl. Phys. A 354, 499 (1981)CrossRefADSGoogle Scholar
  21. 21.
    C. Gaarde, in Proc. Niels Bohr Centennial Conf., Copenhagen, eds. by R. Broglia, G. Hageman, B. Herskind (North-Holland, Amsterdam, 1985)Google Scholar
  22. 22.
    J. Rapaport, E. Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994), and references thereinGoogle Scholar
  23. 23.
    H.A. Bethe et al., Nucl. Phys. A 324, 487 (1979)CrossRefADSGoogle Scholar
  24. 24.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980)CrossRefADSGoogle Scholar
  25. 25.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 48, 279 (1982)CrossRefADSGoogle Scholar
  26. 26.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 252, 715 (1982)CrossRefADSGoogle Scholar
  27. 27.
    G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 293, 1 (1985)CrossRefADSGoogle Scholar
  28. 28.
    T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)CrossRefADSGoogle Scholar
  29. 29.
    I. Bergqvist et al., Nucl. Phys. A 469, 648 (1987)CrossRefADSGoogle Scholar
  30. 30.
    M. Fujiwara et al., Phys. Rev. Lett. 85, 4442 (2000)CrossRefADSGoogle Scholar
  31. 31.
    T.A. Kirsten, Nucl. Phys. B 77, 26 (1999)CrossRefGoogle Scholar
  32. 32.
    V.N. Gavrin, Nucl. Phys. B 77, 20 (1999)CrossRefGoogle Scholar
  33. 33.
    J.N. Bahcall, Nucl. Phys. B 77, 64 (1999)CrossRefGoogle Scholar
  34. 34.
    M. Bhattacharya et al., Phys. Rev. Lett. 85, 4446 (2000)CrossRefADSGoogle Scholar
  35. 35.
    M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. A 422, 484 (1999)CrossRefADSGoogle Scholar
  36. 36.
    T. Wakasa et al., Nucl. Instrum. Methods Phys. Res. A 482, 79 (2002)CrossRefADSGoogle Scholar
  37. 37.
    Y. Fujita et al., Phys. Lett. B 365, 29 (1996)CrossRefADSGoogle Scholar
  38. 38.
    Y. Fujita et al., Eur. Phys. J. A 13, 411 (2002)ADSGoogle Scholar
  39. 39.
    W. Mettner et al., Nucl. Phys. A 473, 160 (1987)CrossRefADSGoogle Scholar
  40. 40.
    F. Ajzenberg-Selove et al., Phys. Rev. C 30, 1850 (1984)CrossRefADSGoogle Scholar
  41. 41.
    F. Ajzenberg-Selove et al., Phys. Rev. C 31, 777 (1985)CrossRefADSGoogle Scholar
  42. 42.
    S. El-Kateb et al., Phys. Rev. C 49, 3128 (1994)CrossRefADSGoogle Scholar
  43. 43.
    Y. Fujita et al., Phys. Rev. C 67, 064312 (2003)CrossRefADSGoogle Scholar
  44. 44.
    Y. Fujita et al., Phys. Rev. Lett. 92, 062502 (2004)CrossRefADSGoogle Scholar
  45. 45.
    Y. Fujita, Nucl. Phys. A 805, 408 (2008), and reference thereinGoogle Scholar
  46. 46.
    E. Caurier et al., Nucl. Phys. A 653, 439 (1999), and reference thereinGoogle Scholar
  47. 47.
    K. Langanke, G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000)CrossRefADSGoogle Scholar
  48. 48.
    K. Langanke, G. Martínez-Pinedo, At. Data Nucl. Data Tables 79, 1 (2001)CrossRefADSGoogle Scholar
  49. 49.
    K. Langanke, G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819 (2003)CrossRefADSGoogle Scholar
  50. 50.
    A. Poves et al., Nucl. Phys. A 694, 157 (2001)CrossRefADSGoogle Scholar
  51. 51.
    A. Heger et al., Phys. Rev. Lett. 86, 1678 (2001)CrossRefADSGoogle Scholar
  52. 52.
    A. Heger et al., Astrophys. J. 560, 307 (2001)CrossRefADSGoogle Scholar
  53. 53.
    W.P. Alford et al., Nucl. Phys. A 514, 49 (1990)CrossRefADSGoogle Scholar
  54. 54.
    M.C. Vetterli et al., Phys. Rev. C 40, 559 (1989)CrossRefADSGoogle Scholar
  55. 55.
    W.P. Alford et al., Phys. Rev. C 48, 2818 (1993)CrossRefADSGoogle Scholar
  56. 56.
    A.L. Williams et al., Phys. Rev. C 51, 1144 (1995)CrossRefADSGoogle Scholar
  57. 57.
    M. Hagemann et al., Phys. Lett. B 579, 251 (2004)CrossRefADSGoogle Scholar
  58. 58.
    M. Hagemann et al., Phys. Rev. C 71, 014606 (2005)CrossRefADSGoogle Scholar
  59. 59.
    A.M. van den Berg, Nucl. Instrum. Methods. Phys. Res. B 99, 637 (1995)CrossRefADSGoogle Scholar
  60. 60.
    S. Rakers et al., Nucl. Instrum. Methods. Phys. Res. A 481, 253 (2002)CrossRefADSGoogle Scholar
  61. 61.
    M. Hagemann et al., Nucl. Instrum. Methods. Phys. Res. A 437, 459 (1999)CrossRefADSGoogle Scholar
  62. 62.
    V.M. Hannen et al., Nucl. Instrum. Methods Phys. Res. A 500, 68 (2003)CrossRefADSGoogle Scholar
  63. 63.
    S. Rakers et al., Phys. Rev. C 65, 044323 (2002)CrossRefADSGoogle Scholar
  64. 64.
    B.D. Anderson et al., Phys. Rev. C 43, 50 (1991)CrossRefADSGoogle Scholar
  65. 65.
    M. Honma et al., Phys. Rev. C 69, 034335 (2004)CrossRefADSGoogle Scholar
  66. 66.
    C. Bäumer et al., Phys. Rev. C 68, 031303 (2003)CrossRefADSGoogle Scholar
  67. 67.
    C. Bäumer et al., Phys. Rev. C 71, 024603 (2005)CrossRefADSGoogle Scholar
  68. 68.
    L. Popescu et al., Phys. Rev. C 75, 054312 (2007)CrossRefADSGoogle Scholar
  69. 69.
    D. Frekers, Prog. Part. Nucl. Phys. 57, 217 (2006)CrossRefADSGoogle Scholar
  70. 70.
    D. Patel et al., Phys. Lett. B 718, 447 (2012)CrossRefADSGoogle Scholar
  71. 71.
    A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)CrossRefADSGoogle Scholar
  72. 72.
    P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)CrossRefADSGoogle Scholar
  73. 73.
    C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)CrossRefADSGoogle Scholar
  74. 74.
    M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)CrossRefADSGoogle Scholar
  75. 75.
    M. Vandebrouck et al., Phys. Rev. C 92, 024316 (2015)CrossRefADSGoogle Scholar
  76. 76.
    S. Bagchi et al., Phys. Lett. B 751, 371 (2015)CrossRefADSGoogle Scholar
  77. 77.
    C.E. Demonchy et al., Nucl. Instr. Methods Phys. Res. A 583, 341 (2007)CrossRefADSGoogle Scholar
  78. 78.
    C.E. Demonchy, Nucl. Instr. Methods Phys. Res. A 573, 145 (2007)CrossRefADSGoogle Scholar
  79. 79.
    J.C. Zamora et al., Phys. Lett. B 763, 16 (2016)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.KVI-CART, University of GroningenGroningenThe Netherlands

Personalised recommendations