Applications of 14C, the Most Versatile Radionuclide to Explore Our World

Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 948)

Abstract

Carbon consists of the two stable isotopes (12C and 13C) often accompanied with minute traces of the long-lived radioisotope 14C (half-life = 5700 years). This allows one to use isotope-sensitive methods to trace carbon throughout the environment at large on Earth. In particular, 14C can be used for dating during the past 50,000 years. It has thus revolutionized archaeology, but also many fields of geophysics. Although 14C is a cosmogenic radionuclide produced primarily by cosmic-ray interaction in the atmosphere, the dramatic increase of 14C by the atmospheric nuclear weapons testing period generated a characteristic spike (14C bomb peak) in the early 1960s, which can be used for a variety of unique applications. After describing the basic properties of 14C, the current review focusses on applications of both cosmogenic and anthropogenic 14C, emphasizing the versatility of this extraordinary radionuclide.

Notes

Acknowledgement

This work would not have been possible without the countless collaborations and discussions the author enjoyed over the years with colleagues and friends around the world.

References

  1. 1.
    W.F. Libby, Atmospheric helium three and radiocarbon from cosmic radiation. Phys. Rev. 69, 671 (1946)ADSCrossRefGoogle Scholar
  2. 2.
    E.C. Anderson, W.F. Libby, S. Weinhouse, A.F. Reid, A.D. Kirshenbaum, A.V. Grosse, Natural radiocarbon from cosmic radiation. Phys. Rev. 72, 931 (1947)ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Arnold, W.F. Libby, Age determination by radiocarbon content: checks with samples of known age. Science 110, 678 (1949)ADSCrossRefGoogle Scholar
  4. 4.
    J.W. Holt, G.E. Brown, T.T.S. Kuo, J.D. Holt, R. Machleidt, Shell model description of the 14C dating ß decay with Brown-Rho-scaled NN interactions. Phys. Rev. Lett. 100, 062501 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J.W. Holt, N. Kaiser, W. Weise, Chiral three-nucleon interaction and the 14C-dating ß decay. Phys. Rev. C 79, 054331 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    W. Kutschera, Applications of accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 203 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Crutzen, in My Life with O 3 , NOx and Other YSOxs, ed. by B.G. Malmström. Nobel Lectures in Chemistry 1991–1995, (World Scientific Publishing, Singapore, 1997), pp. 189–242Google Scholar
  8. 8.
    B.J. Bjork et al., Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    H. de Vries, Variaton in concentration of radiocarbon with time and location on earth. Proc. Koninkl. Nederl. Akad. Wetenschappen B 61, 94 (1958)Google Scholar
  10. 10.
    W.F. Libby, Accuracy of radiocarbon dates. Science 140, 278 (1963)ADSCrossRefGoogle Scholar
  11. 11.
    B. Kromer, Radiocarbon and dendrochronology. Dendrochronologia 27, 15 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Stuiver et al., INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3), 1041 (1998)CrossRefGoogle Scholar
  13. 13.
    J. Masarik, J. Beer, Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 104(D10), 12,099 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    T.P. Guilderson, P.J. Reimer, T.A. Brown, The boon and bane of radiocarbon dating. Science 307, 362 (2005)CrossRefGoogle Scholar
  15. 15.
    C. Bronk Ramsey et al., A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338, 370 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Reimer et al., INTCAL13 and MARINE13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869 (2013)CrossRefGoogle Scholar
  17. 17.
    M.W. Dee et al., Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. J. Archaeol. Sci. 37, 687 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Szabo, I. Carmi, D. Segal, E. Mintz, An attempt at absolute 14C dating. Radiocarbon 40(1), 77 (1998)CrossRefGoogle Scholar
  19. 19.
    F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in AD 774-774. Nature 486, 240 (2012)ADSGoogle Scholar
  20. 20.
    M.W. Dee, B.J.S. Pope, Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. R. Soc. A 472, 20160263 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    R.A. Muller, Radioisotope dating with a cyclotron. Science 196, 489 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    K.H. Purser, R.B. Liebert, A.E. Litherland, R.P. Beukens, H.E. Gove, C.L. Bennet, H.R. Clover, W.E. Sondheim, An attempt to detect stable N- ions from a sputter ion source and some implications of the results on the design of tandems for ultrasensitive carbon analysis. Rev. Phys. Appl. 12, 1487 (1977)CrossRefGoogle Scholar
  23. 23.
    C.L. Bennet, R.P. Beukens, M.R. Clover, H.E. Gove, R.B. Liebert, A.E. Litherland, K.H. Purser, W.E. Sondheim, Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198, 508 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    D.E. Nelson, R.G. Korteling, W.R. Stott, Carbon-14: direct detection at natural concentrations. Science 198, 507 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    P. Steier et al., Preparation methods of μg carbon samples for 14C measurements. Radiocarbon 59(3), 803 (2017)CrossRefGoogle Scholar
  26. 26.
    H.-A. Synal, Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192 (2013)CrossRefGoogle Scholar
  27. 27.
    D.E. Murnick, O. Dogru, E. Ilkmen, Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Anal. Chem. 80, 4820 (2008)CrossRefGoogle Scholar
  28. 28.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Persson, G. Eilers, L. Rydersors, E. Mukhtar, G. Possnert, M. Salehpour, Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements. Anal. Chem. 85, 6790 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Paul, H.A.J. Meijer, Intracavity optogalvanic spectroscopy not suitable for ambient level radiocarbon detection. Anal. Chem. 87, 9025 (2015)CrossRefGoogle Scholar
  31. 31.
    C.G. Carson, M. Stute, Y. Ji, R. Polle, A. Reboul, K.S. Lackner, Invalidation of the intracavity optogalvanic method for radiocarbon detection. Radiocarbon 58(1), 213 (2016)CrossRefGoogle Scholar
  32. 32.
    I. Galli et al., Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55(2–3), 213 (2013)CrossRefGoogle Scholar
  33. 33.
    A.D. McCartt, T. Ognibene, G. Bench, K. Turteltaub, Measurements of carbon-14 with cavity ring-down spectroscopy. Nucl. Instrum. Methods Phys. Res. B 361, 277 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    G. Genoud, M. Vainio, H. Phillips, J. Dean, M. Merimaa, Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser. Opt. Lett. 40, 1342 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    I. Galli et al., Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 3(4), 385 (2016)CrossRefGoogle Scholar
  36. 36.
    R.M. Wilson, Smaller, faster, cheaper detection or radiocarbon. Phys. Today 69(6), 19 (2016)CrossRefGoogle Scholar
  37. 37.
    H.-A. Synal, M. Stocker, M. Suter, MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    M. Seiler, S. Maxeiner, L. Wacker, H.-A. Synal, Status of mass spectrometric radiocarbon detection at ETHZ. Nucl. Instrum. Methods Phys. Res. B 361, 245 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    W. Kutschera, W. Müller, “Isotope language” of the Alpine Iceman investigated with AMS and MS. Nucl. Instrum. Methods Phys. Res. B 204, 705 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    W. Kutschera et al., Evidence for early human presence at high altitudes in the Ötztal Alps (Austria/Italy). Radiocarbon 56(3), 923 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Oberhummer, A. Csótó, H. Schlattl, Stellar production rates of carbon and its abundance in the universe. Science 289, 88 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    W. Kutschera et al., Long-lived noble gas radionuclides. Nucl. Instrum Methods Phys. Res. B 92, 241 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    J.A. Simpson, Neutrons produced in the atmosphere by cosmic radiation. Phys. Rev. 83, 1175 (1951)ADSCrossRefGoogle Scholar
  44. 44.
    M. Stuiver, H.A. Pollach, Discussion reporting of 14C data. Radiocarbon 19(3), 355 (1977)CrossRefGoogle Scholar
  45. 45.
    S.M. Fahrni, J.R. Southon, G.M. Santos, S.W.L. Palstra, H.A.J. Meijer, X. Xu, Reassessment of the 13C/12C and 14C/12C isotopic fractionation ratio and its impact on high-precision radiocarbon dating. Geochim. Cosmochim. Acta 213, 330 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    C.N. Waters et al., The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, 137 (2016)CrossRefGoogle Scholar
  47. 47.
    P.J. Crutzen, Geology of mankind. Nature 415, 23 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    V.F. Hess, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 13, 1084 (1912)Google Scholar
  49. 49.
    H.E. Suess, Radiocarbon concentration in modem wood. Science 122, 415 (1955)ADSCrossRefGoogle Scholar
  50. 50.
    T.A. Rafter, G.J. Ferguson, “Atom bomb effect”-recent increase of carbon-14 content of the atmosphere and biosphere. Science 126, 557 (1957)ADSCrossRefGoogle Scholar
  51. 51.
    W.S. Broecker, A. Schulert, E.A. Olson, Bomb carbon-14 in human beings. Science 130, 331 (1959)ADSCrossRefGoogle Scholar
  52. 52.
    I. Levin, V. Hesshaimer, Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1), 69 (2000)CrossRefGoogle Scholar
  53. 53.
    Q. Hua, M. Barbetti, A.Z. Rakowski, Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4), 2059 (2013)CrossRefGoogle Scholar
  54. 54.
    H.D. Graven, Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl. Acad. Sci. 112, 9542 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    W. Kutschera, Accelerator mass spectrometry: state of the art and perspectives. Adv. Phys. X 1(4), 570 (2016)Google Scholar
  56. 56.
    I. Levin et al., 25 years of tropospheric 14C observations in Central Europe. Radiocarbon 27(1), 1 (1985)CrossRefGoogle Scholar
  57. 57.
    H.A.J. Meijer, M.H. Pertuisot, J. van der Plicht, High-accuracy 14C measurements for atmospheric CO2 samples by AMS. Radiocarbon 48(3), 355 (2006)CrossRefGoogle Scholar
  58. 58.
    H.D. Graven, T.P. Guilderson, R.F. Keeling, Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. J. Geophys. Res. 117, D02303 (2012)ADSGoogle Scholar
  59. 59.
    C.A.M. Brenninkmeijer et al., Interhemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO. Nature 356, 50 (1992)ADSCrossRefGoogle Scholar
  60. 60.
    W. Rom et al., A detailed 2-year record of atmospheric 14CO in the temperate northern hemisphere. Nucl. Instr. Meth. Phys. Res. B 161–163, 780 (2000)CrossRefGoogle Scholar
  61. 61.
    V. Gros et al., Detailed analysis of the isotopic composition of CO and characterization of the air masses arriving at Mount Sonnblick (AustrianAlps). J. Geophys. Res. 106(D3), 3179 (2001)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    C. Bronk Ramsey, C.A.M. Brenninkmeijer, P. Jöckel, H. Kjeldsen, J. Masarik, Direct measurements of the radiocarbon production at altitude. Nucl. Instrum. Methods Phys. Res. B 259, 558 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    J. Lelieveld et al., New directions: watching over tropospheric hydroxyl. Atmos. Environ. 40, 5741 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    T.E. Graedel, P.J. Crutzen, Chemie der Atmosphäre (Spektrum AkademischerVerlag, Heidelberg, 1994), p. 551Google Scholar
  65. 65.
    J.H. Butler, The NOAA Annual Greenhouse Gas Index (AGGI), (2017) updates are available on the web http://www.esrl.noaa.gov/gmd/aggi/
  66. 66.
    D.C. Lowe, C.A.M. Brenninkmeijer, M.R. Manning, R. Sparks, G. Wallace, Radio-carbon determination of atmospheric methane at Baring Head, New Zealand. Nature 332, 522 (1988)ADSCrossRefGoogle Scholar
  67. 67.
    R. Eisma, K. van der Borg, A.F.M. de Jong, W.M. Kieskamp, A.C. Veltkamp, Measurements of the 14C content of atmospheric methane in The Netherlands to determine the regional emissions of 14CH4. Nucl. Instrum. Methods. Phys. Res. B 92, 410 (1994)ADSCrossRefGoogle Scholar
  68. 68.
    P. Quay, J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, T. Brown, The isotopic composition of atmospheric methane. Global. Biogeochem. Cycles 13, 445 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    V.V. Petrenko et al., 14CH4 measurements in Greenland Ice: investigating last glacial termination CH4 sources. Science 324, 506 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    G. Anglada-Escude et al., A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    M. Gillon et al., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    W.S. Broecker, T. Peng, Z. Beng, Tracers in the Sea (Eldigio Press, Palisades, 1982), p. 690Google Scholar
  73. 73.
    W.S. Broecker, A. Mix, M. Andree, H. Oeschger, Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: potential for reconstruc-ting ocean ventilation times over the past 20000 years. Nucl. Instrum. Methods. Phys. Res. B 5, 331 (1984)ADSCrossRefGoogle Scholar
  74. 74.
    W.S. Broecker, The great ocean conveyor. Oceanography 4, 79 (1991)CrossRefGoogle Scholar
  75. 75.
    W.S. Broecker, The carbon cycle and climate change: memoirs of my 60 years in science. Geochem. Perspect. 1, 221 (2012)CrossRefGoogle Scholar
  76. 76.
    S. Rahmstorf, Ocean circulation and climate during the past 120,000 years. Nature 419, 207 (2002)ADSCrossRefGoogle Scholar
  77. 77.
    A.P. Mc Nichol et al., Ten years after—the WOCE AMS radiocarbon program. Nucl. Instrum. Methods. Phys. Res. B 172, 479 (2000)ADSCrossRefGoogle Scholar
  78. 78.
    R.M. Key et al., A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, 1 (2004)CrossRefGoogle Scholar
  79. 79.
    H.H. Loosli, in Argon 39: A Tool to Investigate Ocean Water Circulation and Mixing, eds. by P.J. Fritz, C.H. Fontes. Handbook of Environmental Isotope Geochemistry, vol 3 (Elsevier, Amsterdam, 1989), p. 387Google Scholar
  80. 80.
    P. Collon et al., Development of an AMS method to study oceanic circulation characteristics using cosmogenic 39Ar. Nucl. Instrum. Methods. Phys. Res. B 223–224, 428 (2004)CrossRefGoogle Scholar
  81. 81.
    P. Collon et al., Reducing potassium contamination for AMS detection of 39Ar with an electron-cyclotron-resonance ion source. Nucl. Instrum. Methods. Phys. Res. B 283, 77 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    J.-C. Gascard, G. Raisbeck, S. Sequeira, F. Yiou, K.A. Mork, The Norwegian Atlantic current in the Lofoten basin inferred from hydrological and tracerdata (129I) and its interaction with the Norwegian coastal current. Geophys. Res. Lett. 31, L01308 (2004)ADSGoogle Scholar
  83. 83.
    L. Wacker, L.K. Fifield, S.G. Tims, Developments in AMS of 99Tc. Nucl. Instrum. Methods. Phys. Res. B 223–224, 185 (2004)CrossRefGoogle Scholar
  84. 84.
    M.J. Keith-Roach, J.P. Day, L.K. Fifield, F.R. Livens, Measurement of 237Np in environmental water samples by accelerator mass spectrometry. Analyst 126, 58 (2001)ADSCrossRefGoogle Scholar
  85. 85.
    S.R. Winkler, P. Steier, J. Carilli, Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core. Earth Planet. Sci. Lett. 359–360, 124 (2012)CrossRefGoogle Scholar
  86. 86.
    J. Gould et al., Argo profiling floats bring new era of in situ ocean observations. Eos Trans. AGU 85, 185 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    D. Roemmich et al., Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Chang. 5, 240 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    S. Wijffels et al., Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Chang. 6, 116 (2016)ADSCrossRefGoogle Scholar
  89. 89.
    E. Hodge et al., Using the 14C bomb pulse to date young spaleothems. Radiocarbon 53(2), 345 (2011)CrossRefGoogle Scholar
  90. 90.
    J.D.H. Wischusen, L.K. Fifield, R.G. Cresswell, Hydrology of Palm Valley, central Australia; a Pleistocene flora refuge? J. Hydrol. 293, 20 (2004)ADSCrossRefGoogle Scholar
  91. 91.
    J. Fabryka-Martin, H. Bentley, D. Elmore, P.L. Airey, Natural iodine-129 as an environmental tracer. Geochim. Cosmochim. Acta 49, 337 (1985)ADSCrossRefGoogle Scholar
  92. 92.
    A.J. Love, A.L. Herczeg, L. Sampson, R.G. Cresswell, L.K. Fifield, Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin. Water Resour. Res. 36(6), 1561 (2000)ADSCrossRefGoogle Scholar
  93. 93.
    P. Collon et al., 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth Planet. Sci. Lett. 182, 103 (2000)ADSCrossRefGoogle Scholar
  94. 94.
    N.C. Sturchio et al., One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett. 31, L5503 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    F. Ritterbusch et al., Groundwater dating with Atom Trap Trace Analysis of 39Ar. Geophys. Res. Lett. 41, 6758 (2014)ADSCrossRefGoogle Scholar
  96. 96.
    W. Jiang et al., An atom counter for measuring 81Kr and 85Kr in environmental samples. Cosmochim. Geochim. Acta 91, 1 (2012)ADSCrossRefGoogle Scholar
  97. 97.
    W. Aeschbach-Hertig, Radiokrypton dating finally takes off. Proc. Natl. Acad. Sci. 111, 6857 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    C. Buizert et al., Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl. Acad. Sci. 111, 6876 (2014)ADSCrossRefGoogle Scholar
  99. 99.
    C. Renfrew, Archaeology introduction. Radiocarbon 51(1), 121 (2009)CrossRefGoogle Scholar
  100. 100.
    C. Bronk Ramsey, Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337 (2009)CrossRefGoogle Scholar
  101. 101.
    C. Bronk Ramsey et al., Radiocarbon-based chronology for dynastic Egypt. Science 328, 1554 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    H.J. Bruins, J. van der Plicht, J.A. MacGillivray, The Minoan Santorini eruption and tsunami deposits in Palaikastro. Radiocarbon 51, 397 (2004)CrossRefGoogle Scholar
  103. 103.
    S.W. Manning et al., Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity 88, 1164 (2014)CrossRefGoogle Scholar
  104. 104.
    W. Kutschera, Dating of the Thera/Santorini volcanic eruption, Tagungen des Landesmuseums für Vorgeschichte Halle. Band 9, 59 (2013)Google Scholar
  105. 105.
    W. Kutschera et al., The chronology of Tell el-Dab’a: a crucial meeting point of 14C dating, archaeology and Egyptology in the 2nd millennium BC. Radiocarbon 54, 407 (2012)CrossRefGoogle Scholar
  106. 106.
    M. Bietak, in Antagonisms in Historical and Radiocarbon Chronology, ed. by A.J. Shortland, C. Bronk Ramsey, Radiocarbon and the Chronology of Ancient Egypt, Chapter 8, (Oxbow Books, Oxford, 2013), pp. 76–109Google Scholar
  107. 107.
    N. Moeller, G. Marouard, Discussion of Late Middle Kingdom and Early Second Intermediate Period history and chronology in relation to the Kayan sealings from Tell Edfu. Egypt Levant 21, 87 (2011)CrossRefGoogle Scholar
  108. 108.
    F. Höflmayer et al., New evidence for Middle Bronze Age chronology and synchronisms in the Levant: radiocarbon dates from Tell el-Burak, Tell el-Dab’a, and Tel Ifshar compared. Bull. Am. School Orient. Res. 375, 53 (2016)CrossRefGoogle Scholar
  109. 109.
    K.L. Spalding, R.D. Bhardwaj, B.A. Buchholz, H. Druid, J. Frisén, Retrospective birth dating of cells in humans. Cell 122, 133 (2005)CrossRefGoogle Scholar
  110. 110.
    D. Grimm, The mushroom cloud’s silver lining. Science 321, 1434 (2008)CrossRefGoogle Scholar
  111. 111.
    E.M. Wild et al., 14C dating with the bomb peak: an application to forensic medicine. Nucl. Instrum. Methods. Phys. Res. B 172, 944 (2000)ADSCrossRefGoogle Scholar
  112. 112.
    K.L. Spalding, B.A. Buchholz, L.-E. Bergman, H. Druid, J. Frisén, Age written in teeth by nuclear tests. Nature 437, 333 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    N. Lynnerup, H. Kjeldsen, S. Heegaard, C. Jacobsen, J. Heinemeier, Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One 3(1), e1529 (2008)ADSCrossRefGoogle Scholar
  114. 114.
    R.D. Bhardwaj et al., Neocortical neurogenesis in humans is restricted to development. Proc. Natl. Acad. Sci. 103, 12564 (2006)ADSCrossRefGoogle Scholar
  115. 115.
    K.L. Spalding et al., Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219 (2013)CrossRefGoogle Scholar
  116. 116.
    O. Bergmann et al., The age of olfactory bulb neurons in humans. Neuron 74, 634 (2012)CrossRefGoogle Scholar
  117. 117.
    H.B. Huttner et al., The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci. 17, 801 (2014)CrossRefGoogle Scholar
  118. 118.
    K.L. Spalding et al., Dynamics of fat cell turnover in humans. Nature 453, 783 (2008)ADSCrossRefGoogle Scholar
  119. 119.
    M.T. Hyvönen, K.L. Spalding, Maintenance of white adipose tissue in man. Int. J. Biochem. Cell Biol. 56, 123 (2014)CrossRefGoogle Scholar
  120. 120.
    O. Bergmann et al., Dynamics of cell generation and turnover in the human heart. Cell 161, 1566 (2015)CrossRefGoogle Scholar
  121. 121.
    L.L. Hamady, L.J. Natanson, G.B. Skomal, S.R. Thorrold, Vertebral bomb radiocarbon suggests extreme longevity in white sharks. PLoS One 9(1), e84006 (2014)ADSCrossRefGoogle Scholar
  122. 122.
    J. Nielsen et al., Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702 (2016)ADSCrossRefGoogle Scholar
  123. 123.
    L. Caforio et al., Discovering forgeries of modern art by the 14C bomb peak. Eur. Phys. J. Plus 129, 6 (2014).  https://doi.org/10.1140/epjp/i2014-14006-6 CrossRefGoogle Scholar
  124. 124.
    T.E. Cerling et al., Radiocarbon dating of seized ivory confirms rapid decline in African elephant populations and provides insight into illegal trade. Proc. Natl. Acad. Sci. 113, 13330 (2016)ADSCrossRefGoogle Scholar
  125. 125.
    S.K. Wasser et al., Genetic assignment of large seizures of elephant ivory reveals Africas major poaching hotspots. Science 349, 84 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    K.W. Turteltaub et al., Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine-carcinogens to DNA. Proc. Natl. Acad. Sci. 87, 5288 (1990)ADSCrossRefGoogle Scholar
  127. 127.
    R.C. Garner et al., Comparative biotransformation studies of MeIQx and PhIP in animal models and humans. Cancer Lett. 143, 161 (1999)CrossRefGoogle Scholar
  128. 128.
    G. Lappin, R.C. Garner, Big physics, small doses: the use of AMS and PET in human microdosing. Nat. Rev. Drug Disc. 2(3), 233 (2003)CrossRefGoogle Scholar
  129. 129.
    J.S. Vogel, N.M. Palmblad, T. Ognibene, M.M. Kabir, B.A. Buchholz, G. Bench, Biochemical paths in humans and cells: frontiers of AMS bioanalysis. Nucl. Instrum. Methods. Phys. Res. B 259, 754 (2007)ADSCrossRefGoogle Scholar
  130. 130.
    T. Schulze-König, S.R. Dueker, J. Giacomo, M. Suter, J.S. Vogel, H.-A. Synal, BioMICADAS: compact next generation AMS system for pharmaceutical science. Nucl. Instrum. Methods. Phys. Res. B 268, 891 (2010)ADSCrossRefGoogle Scholar
  131. 131.
    R.M.J. Ings, Welcome to ‘microdosing’. Bioanalysis 2(3), 371 (2010)CrossRefGoogle Scholar
  132. 132.
    R.C. Garner, Practical experience of using human microdosing with AMS analysis to obtain early human drug metabolism and PK data. Bioanalysis 2(3), 429 (2010)CrossRefGoogle Scholar
  133. 133.
    R.E.M. Hedges, R.A. Housley, C.R. Bronk, G.J. van Klinken, Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 15. Archaeometry 34(2), 337 (1992)CrossRefGoogle Scholar
  134. 134.
    G. Bonani, S.D. Ivy, I. Hajdas, T.R. Niklaus, M. Suter, AMS 14C age determination of tissue, bone and grass samples from the Ötztal Iceman. Radiocarbon 36(2), 247 (1994)CrossRefGoogle Scholar
  135. 135.
    W. Müller, H. Fricke, A.N. Halliday, M.T. McCulloch, J.-A. Wartho, Origin and migration of the Alpine Iceman. Science 302, 862 (2003)ADSCrossRefGoogle Scholar
  136. 136.
    K. Nicolussi, G. Patzelt, Discovery of Early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene 10(2), 191 (2000)ADSCrossRefGoogle Scholar
  137. 137.
    A. Hormes, B.U. Müller, C. Schlüchter, The Alps with little ice: evidence for eight Holocene phases of reduced glacier extend in the Central Swiss Alps. The Holocene 11(3), 255 (2001)ADSCrossRefGoogle Scholar
  138. 138.
    M. Magny, J.N. Haas, A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. J. Quat. Sci. 19(5), 423 (2004)CrossRefGoogle Scholar
  139. 139.
    C. Schlüchter, U. Joerin, Die Alpen ohne Gletscher (in German). Die Alpen 6, 34 (2004)Google Scholar
  140. 140.
    H. Holzhauser, M. Magny, H.J. Zumbühl, Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15(6), 789 (2005)ADSCrossRefGoogle Scholar
  141. 141.
    K. Nicolussi, M. Kaufmann, G. Patzelt, J. van der Plicht, A. Thurner, Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget. Hist. Archaeobot. 14, 221 (2005)CrossRefGoogle Scholar
  142. 142.
    U.E. Joerin, T.F. Stocker, C. Schlüchter, Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene 16(5), 697 (2006)ADSCrossRefGoogle Scholar
  143. 143.
    M. Grosjean, P.J. Suter, M. Trachsel, H. Wanner, Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations. J. Quat. Sci. 22(3), 203 (2007)CrossRefGoogle Scholar
  144. 144.
    U.E. Joerin, K. Nicolussi, A. Fischer, T.F. Stocker, C. Schlü chter, Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quat. Sci. Rev. 27, 337 (2008)ADSCrossRefGoogle Scholar
  145. 145.
    K. Nicolussi, C. Schlüchter, The 8.2 ka event—calendar-dated glacier response in the Alps. Geology 40(9), 819 (2012)ADSCrossRefGoogle Scholar
  146. 146.
    M. Le Roy et al., Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quat. Sci. Rev. 108, 1 (2015)ADSCrossRefGoogle Scholar
  147. 147.
    W. Kutschera, G. Patzelt, P. Steier, E.M. Maria Wild, The Tyrolean Iceman and his glacial environment during the Holocene. Radiocarbon 59(2), 395 (2017)CrossRefGoogle Scholar
  148. 148.
    B.M. Goehring et al., The Rhone Glacier was smaller than today for most of the Holocene. Geology 39(7), 679 (2011)ADSCrossRefGoogle Scholar
  149. 149.
    I. Schimmelpfennig, J.M. Schaefer, N. Akçar, S. Ivy-Ochs, R.C. Finkel, C. Schlüchter, Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 40(10), 891 (2012)ADSCrossRefGoogle Scholar
  150. 150.
    I. Schimmelpfenning et al., A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220 (2014)ADSCrossRefGoogle Scholar
  151. 151.
    C. Wirsig, J. Zasadni, S. Ivy-Ochs, M. Christl, F. Kober, C. Schlüchter, A deglaciation model of the Oberhasli, Switzerland. J. Quat. Sci. 31(1), 46 (2016)CrossRefGoogle Scholar
  152. 152.
    J.M. Schaefer et al., High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622 (2009)ADSCrossRefGoogle Scholar
  153. 153.
    A.E. Putnam et al., Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat. Geosci. 5, 627 (2012)ADSCrossRefGoogle Scholar
  154. 154.
    J.C. Gosse, F.M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475 (2001)ADSCrossRefGoogle Scholar
  155. 155.
    D.W. Burbank et al., Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505 (1996)ADSCrossRefGoogle Scholar
  156. 156.
    M.K. Pavicevic et al., Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26Al, 36Cl, 3He, and 21Ne). Geochem. Geophys. Geosyst. 17, 410 (2016)ADSCrossRefGoogle Scholar
  157. 157.
    F. Steinhilber, J. Beer, C. Fröhlich, Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009)ADSCrossRefGoogle Scholar
  158. 158.
    J.A. Abreu, J. Beer, F. Steinhilber, M. Christl, P.W. Kubik, 10Be in ice cores and 14C in tree rings: separation of production and climatic effects. Space Sci. Rev. 176(1), 343 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vienna Environmental Research Accelerator (VERA), Faculty of Physics – Isotope Research and Nuclear PhysicsUniversity of ViennaWienAustria

Personalised recommendations