Skip to main content

Pyrophosphate-Dependent Enzymes in Methanotrophs: New Findings and Views

  • Chapter
  • First Online:

Abstract

Inorganic pyrophosphate (PPi) is a by-product of cellular anabolic processes whose recycle by inorganic pyrophosphatases is essential for biosynthetic reactions. While the metabolic role of PPi in anaerobic microorganisms is widely acknowledged, the contribution of PPi to central metabolic pathways in aerobic organisms is less understood. In methanotrophs, the enzyme 6-phosphofructokinase (PPi-PFK, EC 2.7.1.90) utilizes PPi as a phosphoryl donor in an energy-consuming stage of Embden-Meyerhof-Parnas glycolysis, i.e., phosphorylation of fructose-6-posphate into fructose-1,6-bisphosphate. Analysis of genomic data shows that the gene encoding PPi-PFK (pfp) is widespread among proteobacterial methanotrophs, while only rarely present in methylotrophs, thus implying a relationship between the PPi-metabolism and methane oxidation. Hence, a number of PPi-linked enzymes have been investigated, including membranous proton-translocating pyrophosphatase, pyruvate-phosphate dikinase, and phosphoenolpyruvate carboxykinase, in an attempt to uncover methanotrophic metabolic mechanisms that help compensate for the high energetic cost of methane oxidation and reset metabolic pathways for efficient C1-assimilation. The remarkable metabolic versatility of PPi reactions in methanotrophs allows them to grow under quite different environmental conditions, including aerobic respiration and semi-anaerobic formaldehyde fermentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

F6P:

fructose-6-phosphate

FBP:

fructose-1,6-bisphosphate

PFK:

phosphofructokinase

PEP:

phosphoenolpyruvate

PPDK:

pyruvate, phosphate dikinase

PPi:

inorganic pyrophosphate

PEPCK:

phosphoenolpyruvate carboxykinase

PPases:

pyrophosphatases

Ru5P:

ribulose-5-phosphate

S7P:

sedoheptulose-7-phosphate

H+-PPase:

proton-translocating pyrophosphatase

References

  • Akberdin IR, Thompson M, Hamilton R, Desai N, Alexande D, Henard CA, Guarnieri MT, Kalyuzhnaya MG (2018) Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Sci Rep 8(1):2512. https://doi.org/10.1038/s41598-018-20574-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alves AM, Euverink GJ, Hektor HJ et al (1994) Enzymes of glucose and methanol metabolism in the actinomycete Amycolatopsis methanolica. J Bacteriol 176(22):6827–6835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bapteste E, Moreira D, Philippe H (2003) Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene 318:185–191

    Article  CAS  PubMed  Google Scholar 

  • Baxter NJ, Hirt RP, Bodrossy L et al (2002) The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 177:279–289

    Article  CAS  PubMed  Google Scholar 

  • Baykov AA, Malinen AM, Luoto HH et al (2013) Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol Mol Biol Rev 77:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck DA, McTaggart TL, Setboonsarng U et al (2015) Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates. Environ Microbiol 17(3):547–554

    Article  CAS  PubMed  Google Scholar 

  • Beschastny AP, Rozova ON, Khmelenina VN et al (2008) Activities of 6-phosphofructokinases and inorganic pyrophosphatase in aerobic methylotrophic bacteria. Mikrobiologiya (Russian) 77(5):713–715

    Google Scholar 

  • Beschastny AP, Sokolov AP, Khmelenina VN et al (1992) Purification and properties of pyrophosphate-dependent phosphofructokinase of obligate methanotroph Methylomonas methanica. Biochemistry (Moscow) 57:1215–1221

    Google Scholar 

  • Chi A, Kemp RG (2000) The primordial high energy compound: ATP or inorganic pyrophosphate? J Biol Chem 275:35677–35679

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Kamikawa R, Nakada-Tsukui K, Saito-Nakano Y, Nozaki T (2015) Discovery of PPi-type phosphoenolpyruvate carboxykinase genes in eukaryotes and bacteria. J Biol Chem 290(39):23960–23970

    Article  CAS  PubMed  Google Scholar 

  • Eshinimaev BT, Medvedkova KA, Khmelenina VN et al (2004) New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiya (Moscow) 73:530–539

    Google Scholar 

  • Gest H (1972) Energy conversion and generation of reducing power in bacterial photosynthesis. Adv Microb Physiol 7:243–282

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON et al (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Rozova ON, Trotsenko YA (2011) Characterization of the recombinant pyrophosphate-dependent 6-phosphofructokinases from Methylomicrobium alcaliphilum 20Z and Methylococcus capsulatus Bath. Methods Enzymol 495:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A (1962) On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In: Kasha HPB (ed) Horizons in biochemistry. Academic Press, New York, pp 251–264

    Google Scholar 

  • Lopez-Marques RL, Perez-Castineira JR, Losada M, Serrano A (2004) Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics. J Bacteriol 186(16):5418–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansurova SE (1989) Inorganic pyrophosphate in mitochondrial metabolism. Biochim Biophys Acta 977:237–247

    Article  CAS  PubMed  Google Scholar 

  • Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5

    Article  CAS  PubMed  Google Scholar 

  • Mertens E (1993) ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitol Today 9:122–126

    Article  CAS  PubMed  Google Scholar 

  • Meurice G, Deborde C, Jacob D et al (2004) In silico exploration of the fructose-6-phosphate phosphorylation step in glycolysis: genomic evidence of the coexistence of an atypical ATP-dependent along with a PPi-dependent phosphofructokinase in Propionibacterium freudenreichii subsp. shermanii. In Silico Biol 4:517–528

    PubMed  CAS  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  PubMed  Google Scholar 

  • O’Brien WE, Bowin S, Wood HG (1975) Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii. J Biol Chem 250:8690–8695

    PubMed  Google Scholar 

  • Pfleiderer C, Klemme JH (1980) Pyrophosphate-dependent D-fructose-6-phosphate-phosphotransferase in Rhodospirillaceae. Z Naturforsch 35:229–238

    Article  CAS  Google Scholar 

  • Reeves RE, Serrano R, South DJ (1976) 6-Phosphofructokinase (pyrophosphate). Properties of the enzyme from Entamoeba histolytica and its reaction mechanism. J Biol Chem 251:2958–2962

    PubMed  CAS  Google Scholar 

  • Reeves RE, South DJ, Blytt HJ et al (1974) Pyrophosphate: d-fructose 6-phosphate 1-phosphotransferase: a new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem 249:7737–7741

    PubMed  CAS  Google Scholar 

  • Renier A, De Faria SM, Jourand P et al (2011) Nodulation of Crotalaria podocarpa DC by Methylobacterium nodulans displays very unusual features. J Exp Bot 62(10):3693–3697

    Article  CAS  PubMed  Google Scholar 

  • Reshetnikov AS, Rozova ON, Khmelenina VN et al (2008) Сharacterization of pyrophosphate-dependent 6-phosphofructokinase from Methylococcus capsulatus Bath. FEMS Microbiol Lett 288:202–210

    Article  CAS  PubMed  Google Scholar 

  • Rozova ON, Khmelenina VN, Vuilleumier S et al (2010) Characterisation of the recombinant pyrophosphate-dependent 6-phosphofructokinase from halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Res Microbiol 161:861–868

    Article  CAS  PubMed  Google Scholar 

  • Rozova ON, Khmelenina VN, Trotsenko YA (2012) Characterization of recombinant PPi-dependent 6-phosphofructokinases from Methylosinus trichosporium OB3b and Methylobacterium nodulans ORS 2060. Biochemistry (Mosc) 77(3):288–295

    Article  CAS  Google Scholar 

  • Slamovits CH, Keeling PJ (2006) Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot Cell 5:148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scöcke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation for Basic Research #18-04-00771 and by the US Department of Energy Bioenergy Technologies Office (DOE-BETO under contract No. DE-AC36-08GO28308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina N. Khmelenina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khmelenina, V.N., Rozova, O.N., Akberdin, I.R., Kalyuzhnaya, M.G., Trotsenko, Y.A. (2018). Pyrophosphate-Dependent Enzymes in Methanotrophs: New Findings and Views. In: Kalyuzhnaya, M., Xing, XH. (eds) Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-74866-5_6

Download citation

Publish with us

Policies and ethics