Skip to main content

Proteobacterial Methanotrophs, Methylotrophs, and Nitrogen

  • Chapter
  • First Online:
Methane Biocatalysis: Paving the Way to Sustainability

Abstract

Research on intersections between single-carbon and nitrogen metabolism have revealed a number of unexpected insights that have expanded our view of how proteobacterial methanotrophs and methylotrophs impact biogeochemical cycles. Aside from assimilating nitrogen as an essential element for cellular growth and metabolism, methanotrophs and methylotrophs metabolize and transform a diversity of inorganic and organic nitrogenous molecules and release reactive nitrogen species as products. Thus, methanotrophs and methylotrophs play a major role in both the global carbon and nitrogen cycles. This chapter outlines the more recent discoveries and unusual nitrogenous molecules and pathways used by proteobacterial methanotrophs and methylotrophs for assimilation, respiration, and regulation of their activities. The role of nitrogen in axenic cultures, complex communities, and bioindustrial applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson EL, Allison SD, Helliker BR (2013) Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 4:15

    Article  Google Scholar 

  • Bao ZH, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M et al (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N et al (2014) The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLos One 9:12

    Google Scholar 

  • Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee AS, Motlagh AM, Jetten MSM, Goel R (2016) Methane dependent denitrification- from ecosystem to laboratory-scale enrichment for engineering applications. Water Res 99:244–252

    Article  CAS  PubMed  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  PubMed  Google Scholar 

  • Bodelier PLE, Steenbergh AK (2014) Interactions between methane and nitrogen cycling: current metagenomic studies and future trends. Caister Academic, Wymondham

    Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bowman J (2006) The methanotrophs - the families Methylococcaceae and Methylocystaceae. In: Dworkin M (ed) The prokaryotes. Springer, New York, N.Y., pp 266–289

    Chapter  Google Scholar 

  • Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocyctis species, and a proposal that the family Methylococcaceae includes only the Group I methanotrophs. Int J Syst Bacteriol 43:735–753

    Article  Google Scholar 

  • Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2008) 15N2–DNA–stable isotope probing of diazotrophic methanotrophs in soil. Soil Biol Biochem 40:1272–1283

    Article  CAS  Google Scholar 

  • Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG (2011) Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett 322:82–89

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L (2014) Functional metagenomics of the nitrogen cycle in freshwater lakes with focus on methylotrophic bacteria. Caister Academic, Wymondham

    Google Scholar 

  • Chistoserdova L (2015) Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 99:5763–5779

    Article  CAS  PubMed  Google Scholar 

  • Dam B, Dam S, Blom J, Liesack W (2013) Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp strain SC2. PLos One 8:15

    Google Scholar 

  • Dam B, Dam S, Kim Y, Liesack W (2014) Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp strain SC2. Environ Microbiol 16:3115–3127

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedysh SN, Didriksen A, Danilova OV, Belova SE, Liebner S, Svenning MM (2015) Methylocapsa palsarum sp nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 65:3618–3624

    Article  CAS  PubMed  Google Scholar 

  • Ding ZW, Lu YZ, Fu L, Ding J, Zeng RJ (2017) Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 101:437–446

    Article  CAS  PubMed  Google Scholar 

  • Doronina NV, Kudinova LV, Trotsenko YA (2000) Methylovorus mays sp nov.: A new species of aerobic, obligately methylotrophic bacteria associated with plants. Microbiology 69:599–603

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71:4199–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood JA, Mills J, Tyler PD, Jones CW (1998) Physiological regulation, purification and properties of urease from Methylophilus methylotrophus. FEMS MIcrobiol Lett 160:131–135

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microb Rev 60:439–471

    CAS  Google Scholar 

  • Ho A, Angel R, Veraart AJ, Daebeler A, Jia ZJ, Kim SY et al (2016) Biotic interactions in microbial communities as modulators of biogeochemical processes: Methanotrophy as a model system. Front Microbiol 7:11

    Article  Google Scholar 

  • Hoefman S, van der Ha D, Boon N, Vandamme P, De Vos P, Heylen K (2014) Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol 14:11

    Article  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A et al (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nature Commun 4:7

    Article  CAS  Google Scholar 

  • Kelly DP, McDonald IR, Wood AP (2014) The Family Methylobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 313–340

    Chapter  Google Scholar 

  • Khadem AF, Pol A, Jetten MSM, den Camp H (2010) Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiol SGM 156:1052–1059

    Article  CAS  Google Scholar 

  • Kits KD, Klotz MG, Stein LY (2015a) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232

    Article  CAS  PubMed  Google Scholar 

  • Kits KD, Campbell DJ, Rosana AR, Stein LY (2015b) Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01072

  • Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278:146–456

    Article  CAS  PubMed  Google Scholar 

  • Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211:57–64

    Article  CAS  PubMed  Google Scholar 

  • Larmola T, Leppanen SM, Tuittila ES, Aarva M, Merila P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci 111:734–739

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Guo QW, Li NN, Li BX, Tong TL, Xie SG (2017) Spatial change of reservoir nitrite-dependent methane-oxidizing microorganisms. Annals Microbiol 67:165–174

    Article  CAS  Google Scholar 

  • Maalcke WJ, Dietl A, Marritt SJ, Butt JN, Jetten MSM, Keltjens JT et al (2014) Structural basis of biological NO generation by octaheme oxidoreductases. J Biol Chem 289:1228–1242

    Article  CAS  PubMed  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ et al (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–U120

    Article  CAS  PubMed  Google Scholar 

  • Minamisawa K, Imaizumi-Anraku H, Bao ZH, Shinoda R, Okubo T, Ikeda S (2016) Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environ 31:4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013) Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants. J Bacteriol 195:2207–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak DD, Agashe D, Lee M-C, Marx CJ (2016) Selection maintains apparently degenerate metabolic pathways due to tradeoffs in using methylamine for carbon versus nitrogen. Curr Biol 26:1416–1426

    Article  CAS  PubMed  Google Scholar 

  • Nyerges G, Stein LY (2009) Ammonia co-metabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 297:131–136

    Article  CAS  PubMed  Google Scholar 

  • Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr. https://doi.org/10.1002/lno.10312

  • Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Ramirez EG, Benson CR et al (2016) NC10 bacteria in marine oxygen minimum zones. ISME J 10:2067–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieja AJ, Sundstrom ER, Criddle CS (2011a) Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieja AJ, Rostkowski KH, Criddle CS (2011b) Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic Proteobacteria. Microb Ecol 62:564–573

    Article  CAS  PubMed  Google Scholar 

  • Rostkowski KH, Pfluger AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77

    Article  CAS  PubMed  Google Scholar 

  • Shen LD, Wu HS, Gao ZQ, Li J, Liu X (2016) Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils. J Appl Microbiol 120:1552–1560

    Article  CAS  PubMed  Google Scholar 

  • Skennerton CT, Ward LM, Michel A, Metcalfe K, Valiente C, Mullin S et al (2015) Genomic reconstruction of an uncultured hydrothermal vent gammaproteobacterial methanotroph (Family Methylothermaceae) indicates multiple adaptations to oxygen limitation. Front Microbiol 6:12

    Article  Google Scholar 

  • Stein LY, Klotz MG (2011) Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc T 39:1826–1831

    Article  CAS  Google Scholar 

  • Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MSM, Kalyuzhnaya MG et al (2011) Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp strain Rockwell (ATCC 49242). J Bacteriol 193:2668–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MSM, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100

    Article  CAS  PubMed  Google Scholar 

  • Tavormina PL, Ussler W, Steele JA, Connon SA, Klotz MG, Orphan VJ (2013) Abundance and distribution of diverse membrane-bound monooxygenase (Cu-MMO) genes within the Costa Rica oxygen minimum zone. Environ Microbiol Rep 5:414–423

    Article  CAS  PubMed  Google Scholar 

  • Vaksmaa A, Luke C, van Alen T, Vale G, Lupotto E, Jetten MSM, Ettwig KF (2016) Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol Ecol 92

    Google Scholar 

  • Vile MA, Kelman Wieder R, Živković T, Scott KD, Vitt DH, Hartsock JA et al (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328

    Article  CAS  Google Scholar 

  • Webb HK, Ng HJ, Ivanova EP (2014) The Family Methylocystaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 341–347

    Chapter  Google Scholar 

  • Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM et al (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955

    Article  CAS  PubMed  Google Scholar 

  • Zhang TT, Zhou JT, Wang XW, Zhang Y (2017) Coupled effects of methane monooxygenase and nitrogen source on growth and poly-beta-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. J Environ Sci 52:49–57

    Article  Google Scholar 

  • Zhu BL, Bradford L, Huang SC, Szalay A, Leix C, Weissbach M et al (2017) Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Appl Environ Microbiol 83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Y. Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stein, L.Y. (2018). Proteobacterial Methanotrophs, Methylotrophs, and Nitrogen. In: Kalyuzhnaya, M., Xing, XH. (eds) Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-74866-5_4

Download citation

Publish with us

Policies and ethics