Skip to main content

Biogas, Bioreactors and Bacterial Methane Oxidation

  • Chapter
  • First Online:
Methane Biocatalysis: Paving the Way to Sustainability

Abstract

Pure methane is an energy-rich feedstock used to generate electricity, for domestic heating and cooking and as a vehicle fuel. Methane is the second most abundant greenhouse gas and is commonly available as the predominant component of natural gas or biogas. Biogas is viewed as a renewable methane supply, and its production and sources are discussed. Capture of this microbially-derived methane is a significant opportunity not only for heat and energy production, but also for its possible conversion to value-added products from methane-oxidising bacteria. Examples of methanotrophs cultured using methane from biogas are discussed, as well as bioreactor choice and provision of gas to the bacteria. Various bioreactor designs are explained in terms of applicability to methanotroph cultivation. Finally, methanotrophs are discussed in the context of two extremes: their use in methane mitigation and bioremediation versus the synthesis of biological products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Tauseef SM et al (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sust Energy Rev 16(5):3228–3242

    Article  CAS  Google Scholar 

  • Ahoughalandari B, Cabral AR (2016) Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: parametric study. Waste Manag 63:172–187

    Article  CAS  PubMed  Google Scholar 

  • Appels L, Baeyens J et al (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combustion Sci 34(6):755–781

    Article  CAS  Google Scholar 

  • Blanchette CD, Knipe JM et al (2016) Printable enzyme-embedded materials for methane to methanol conversion. Nat Commun 7:11900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredwell MD, Srivastava P et al (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15(5):834–844

    Article  CAS  PubMed  Google Scholar 

  • Chmiel H (2011) Bioprozesstechnik. Springer, Heidelberg

    Book  Google Scholar 

  • Dassama LMK, Kenney GE et al (2017) Methanobactins: from genome to function. Metallomics 9(1):7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan C, Luo M et al (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102(15):7349–7353

    Article  CAS  PubMed  Google Scholar 

  • EEG (2017) Gesetz für den Ausbau erneuerbarer Energien. https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html

  • EPA (2010) Methane and nitrous oxide emissions from natural sources. EPA 430-R-10-001

    Google Scholar 

  • Fendt S, Buttler A et al (2016) Comparison of synthetic natural gas production pathways for the storage of renewable energy. Wiley Interdiscip Rev Energy Environ 5(3):327–350

    Article  CAS  Google Scholar 

  • Gebert J, Singh BK et al (2009) Activity and structure of methanotrophic communities in landfill cover soils. Environ Microbiol Rep 1(5):414–423

    Article  CAS  PubMed  Google Scholar 

  • Gilman A, Laurens LM et al (2015) Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb Cell Fact 14(1):182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Su T et al (2009) Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 83(4):669–677

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hickey RF, Tsai SP et al (2011) Submerged membrane supported bioreactor for conversion of syngas components to liquid products. US Patent 8058058 B2

    Google Scholar 

  • Huber-Humer M, Gebert J et al (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) IPCC Fifth Assessment Report (AR4). Climate change 2013: the physical science basis. Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Cambridge University Press, Cambridge, UK, pp 93–129

    Google Scholar 

  • Jiang H, Chen Y et al (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49(3):277–288

    Article  CAS  Google Scholar 

  • Kern JD, Characklis GW (2017) Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams. Energy Econ 61:340–350

    Article  Google Scholar 

  • Kim S, Dale B (2016) A distributed cellulosic biorefinery system in the US Midwest based on corn stover. Biofuels Bioprod Biorefin 10(6):819–832

    Article  CAS  Google Scholar 

  • Kinley RD, de Nys R et al (2016) The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci 56(3):282–289

    Article  CAS  Google Scholar 

  • Larsen, EB (2002). U-shape and/or nozzle U-loop fermentor and method of carrying out a fermentation process. US Patent 6492135 B1

    Google Scholar 

  • Lebrero R, Hernández L et al (2015) Two-liquid phase partitioning biotrickling filters for methane abatement: exploring the potential of hydrophobic methanotrophs. J Environ Manag 151:124–131

    Article  CAS  Google Scholar 

  • Lee E-H, Moon K-E et al (2017) Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J Biotechnol 242:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour Technol 100(16):3792–3798

    Article  CAS  PubMed  Google Scholar 

  • Luna-delRisco M, Normak A et al (2011) Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res 9(1–2):331–342

    Google Scholar 

  • Manfredi S, Tonini D et al (2009) Landfilling of waste: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):825–836

    Article  CAS  PubMed  Google Scholar 

  • Mehta PK, Ghose TK et al (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol Bioeng 37(6):551–556

    Article  CAS  PubMed  Google Scholar 

  • Munasinghe PC, Khanal SK (2010a) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101(13):5013–5022

    Article  CAS  PubMed  Google Scholar 

  • Munasinghe PC, Khanal SK (2010b) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26(6):1616–1621

    Article  CAS  PubMed  Google Scholar 

  • Nikiema J, Brzezinski R et al (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Bio/Technol 6(4):261–284

    Article  CAS  Google Scholar 

  • Park S, Hanna ML et al (1991) Batch cultivation of Methylosinus trichosporium OB3b. I: production of soluble methane monoxygenase. Biotechnol Bioeng 38(4):423–433

    Article  CAS  PubMed  Google Scholar 

  • Park S, Shah NN et al (1992) Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol Bioeng 40(1):151–157

    Article  CAS  PubMed  Google Scholar 

  • Patel SKS, Jeong J-H et al (2016a) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26(12):2098–2105

    Article  CAS  PubMed  Google Scholar 

  • Patel SKS, Mardina P et al (2016b) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208

    Article  CAS  PubMed  Google Scholar 

  • Pen N, Soussan L et al (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresour Technol 174:42–52

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh WS, Whalen SC et al (1993) The role of methylotrophy in the global methane budget. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Limited, Andover, pp 1–14

    Google Scholar 

  • Scheutz C, Kjeldsen P et al (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27(5):409–455

    Article  CAS  PubMed  Google Scholar 

  • Serra MCC, Pessoa FLP et al (2006) Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria. J Chem Thermodyn 38(12):1629–1633

    Article  CAS  Google Scholar 

  • Shah NN, Hanna ML et al (1996) Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol Bioeng 49(2):161–171

    Article  CAS  PubMed  Google Scholar 

  • Sheets JP, Ge X et al (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57

    Article  CAS  PubMed  Google Scholar 

  • Shimomura T, Suda F et al (1997) Biodegradation of trichloroethylene by Methylocystis sp. strain M immobilized in gel beads in a fluidized-bed bioreactor. Water Res 31(9):2383–2386

    Article  CAS  Google Scholar 

  • Singh JS, Strong PJ (2015) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  PubMed  Google Scholar 

  • Speight JG, Lange NA et al (2005) Lange's handbook of chemistry. McGraw-Hill, New York, NY

    Google Scholar 

  • Strong PJ, Xie S et al (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Kalyuzhnaya MG et al (2016) A methanotroph-based biorefinery: scenarios for generating multiple products from a single culture. Under submission, Bioresour Technol

    Google Scholar 

  • Su Y, Pei J et al (2015) Potential application of biocover soils to landfills for mitigating toluene emission. J Hazard Mater 299:18–26

    Article  CAS  PubMed  Google Scholar 

  • Takeguchi M, Miyakawa K et al (1998) Properties of the membranes containing the particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biometals 11(3):229–234

    Article  CAS  PubMed  Google Scholar 

  • Takeguchi M, Miyakawa K et al (1999) The role of copper in particulate methane monooxygenase from Methylosinus trichosporium OB3b. J Mol Catal A Chem 137(1–3):161–168

    Article  CAS  Google Scholar 

  • Vega JL, Clausen EC et al (1990) Design of bioreactors for coal synthesis gas fermentations. Resour Conserv Recycl 3(2–3):149–160

    Article  Google Scholar 

  • WorldBank (2015) Zero Routine Flaring by 2030. http://www.worldbank.org/en/programs/zero-routine-flaring-by-2030

  • Wu Y-M, Yang J et al (2017) Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour Technol 231:124–128

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ge X et al (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sust Energy Rev 40:1133–1152

    Article  CAS  Google Scholar 

  • Yaws C, Braker W (2001) Matheson gas data book. McGraw-Hill, Parsippany, NJ

    Google Scholar 

  • Yoo Y-S, Han J-S et al (2015) Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ Technol 36(8):983–991

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Carey JN et al (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83(5):949–956

    Article  CAS  PubMed  Google Scholar 

  • Yu SS, Chen KH et al (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185(20):5915–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Ge X et al (2016) Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochem 51(7):838–844

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mühlemeier, I.M., Speight, R., Strong, P.J. (2018). Biogas, Bioreactors and Bacterial Methane Oxidation. In: Kalyuzhnaya, M., Xing, XH. (eds) Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-74866-5_14

Download citation

Publish with us

Policies and ethics